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Preface

This document is the manuscript for my application to the Habilitation à Diriger des
Recherches (HDR). It is intended to demonstrate that I am able to direct research, building
on the research activities which I have advised. As I was educated in the American uni-
versity system, this step of the academic process was first foreign to me. However, I have
greatly appreciated the opportunity to pause at this point in my career, to reflect, and to
write.

It appears that there are countless ways to format and write an HDR manuscript. The goal
is to represent an overview of my research, which motivates the inclusion of the curriculum
vitae following this preface. In the rest of the manuscript, I focus on my work, in detail, as
the main examples to motivate a thesis. However, the format of this evaluation, including
this manuscript, allow me an additional liberty rarely taken in scientific writing. Rather than
comprehensively detailing all the work under my supervision, I have chosen to advance a
point of view.

My thesis was shaped by the books “Intelligence Emerging: Adaptivity and Search in
Evolving Neural Systems” (Downing 2015), “The Selfish Gene” (Dawkins 2016), and
“Principles of Neural Design” (Sterling and Laughlin 2015). This manuscript was heav-
ily influenced by the writings of Carl Sagan, Yuval Noah Harari, and Melanie Mitchell.
I don’t claim to place this manuscript amongst these works, but rather offer them as an
explanation. Accessible, observant, and even opinionated scientific writing has long been
an inspiration for me. I hope that, with this manuscript, I can provide perspective on my
research, beyond what is found in the articles referenced herein.
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1 Introduction

Models have long been used to help us understand our world. Over two thousand years ago,
the astronomers of ancient Greece sought to explain the motions of the planets through
geometry and mathematics. The model of nested crystal spheres, proposed by Aristotle
and refined by Ptolemy, placed Earth at the center of the universe. The planets, sun, and
stars were thought to be mounted on transparent spheres, rotating in perfect circles around
our world. These circles were chosen not just for their mathematical simplicity - they were
considered divine, the only shape worthy of the celestial bodies’ perfect nature (Sagan
1981).

There were alternative models, such as the heliocentric model of Aristarchus of Samos,
who proposed that our planet was just one of many that orbited the Sun. But most
astronomers held to the established geocentric model, believing the perfect circles of
planetary motion reflected God’s design of the cosmos. These models, while imperfect
by modern standards, represented the best understanding possible given the observational
capabilities of the time.

This changed with the detailed observations of Tycho Brahe in the 16th century. Working
before the invention of the telescope, Brahe built massive instruments to precisely measure
the positions of planets and stars. Over decades of careful observation, he assembled the
most accurate astronomical data ever collected. His measurements were accurate to within
a few arc minutes - a remarkable achievement that would prove crucial for understanding
planetary motion. But Brahe was primarily an observer, collecting data without a proper
mathematical framework to explain it.

Johannes Kepler, Brahe’s assistant, inherited this vast collection of astronomical mea-
surements. Kepler spent years trying to reconcile these observations with the perfect circles
of classical astronomy. But the data refused to fit - Mars’ observed position differed
from the predictions by eight arc minutes. Where others might have dismissed this small
discrepancy, Kepler recognized its significance (Kepler and Donahue 1992), writing:

Since the divine benevolence has vouchsafed us Tycho Brahe, a most diligent observer, from
whose observations the 8’ error in this Ptolemaic computation is shown, it is fitting that we
with thankful mind both acknowledge and honor this benefit of God... For if I had thought
I could ignore eight minutes of longitude, in bisecting the eccentricity I would already have
made enough of a correction in the vicarious hypothesis found in Ch. 16. Now, because
they could not have been ignored, these eight minutes alone will have led the way to the
reformation of all of astronomy, and have constituted the material for a great part of the
present work.
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After years of mathematical labor, he discovered that planets move in ellipses, not cir-
cles, with the Sun at one focus. The collaboration of Brahe’s precise observations with
Kepler’s mathematical genius revolutionized our understanding of the solar system, and
demonstrated a fundamental principle of science: models must be confronted with reality,
and data must be interpreted through theoretical frameworks. Neither alone is sufficient for
discovery.

1.1 Models

On a spring morning in 1915, Lewis Fry Richardson undertook an extraordinary experi-
ment. Working with just pen and paper, he attempted the first numerical weather forecast
by dividing the atmosphere into a grid and calculating how conditions would change over
six hours. The forecast took him six weeks to complete - far too slow for practical use, but
revolutionary in its approach.

In 1922, Richardson published his vision of a "forecast factory" where 64,000 human
computers would work in parallel, each responsible for calculations in their grid cell,
passing information to their neighbors. A conductor at the center would coordinate their
efforts, assembling a complete picture of tomorrow’s weather. While fantastical at the
time, Richardson had outlined the basic architecture of modern weather prediction: parallel
computation across a discretized atmosphere (Richardson and Ashford 1993).

This vision began to materialize in the 1950s when the first digital computers appeared.
In 1960, Edward Lorenz at MIT encoded the physics of the atmosphere into twelve dif-
ferential equations that his Royal McBee computer could simulate (Lorenz 1982). Though
primitive by today’s standards - the machine could perform just sixty multiplications per
second - it represented a fundamental shift in how we model nature. Rather than seek-
ing perfect mathematical forms like Kepler’s ellipses, modern scientific models would use
computation to handle complexity (North 1975; Gould et al. 1996).

Today’s weather centers employ massive supercomputers, dividing the globe into mil-
lions of grid cells and tracking hundreds of variables at each location. Yet even with this
computational might, these models face fundamental limits. They require immense com-
puting power, making long-range forecasts prohibitively expensive. More crucially, they
may not fully capture the patterns hidden in the wealth of observational data now available
from satellites, weather stations, and other sensors (Eyring et al. 2024).

A new approach to modeling physical systems has recently taken the world by storm:
machine learning models that can learn patterns directly from observational data. These
advances have been largely driven by a type of machine learning, deep learning (LeCun,
Bengio, and Hinton 2015). Unlike traditional models that encode physical equations, the
deep neural networks of deep learning consist of many, sometimes millions, of intercon-
nected artificial neurons. The parameters of this Artificial Neural Network (ANN), being
the strength of connections between neurons and their activation bias, are adjusted through
a process of trial-and-error referred to as training or learning. A deep neural network makes
a prediction or estimate based on an example from a dataset, then the error in this pre-
diction is used to correct the many parameters of the network (Rumelhart, Hinton, and
Williams 1986). This approach has revolutionized fields like computer vision (Krizhevsky,
Sutskever, and Hinton 2012) and natural language processing (Brown et al. 2020). Just as a
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meteorologist develops intuition by observing weather patterns over many years of experi-
ence, these networks learn to recognize complex relationships in data through this process
of training.

GraphCast, developed by Google DeepMind, exemplifies this shift (Lam et al. 2023).
Rather than simulating atmospheric physics step by step, it learns weather patterns from
historical data. The results are impressive - not only does it match or exceed the accuracy
of traditional numerical models, but it produces global forecasts in under a minute, a task
that takes supercomputers hours. This dramatic speedup could enable more frequent fore-
casts and longer prediction windows, potentially revolutionizing our ability to prepare for
extreme weather.

Similar advances are occurring across scientific domains. Machine learning models
now predict protein structures (Jumper et al. 2021), discover new materials (Merchant et
al. 2023), and forecast floods (Nearing et al. 2024) with impressive accuracy. Were Kepler
alive today, he might be astounded to learn that a telescope bearing his name has used these
techniques to discover planets in other solar systems (Valizadegan et al. 2022).

However, these models function as "black boxes." Unlike Kepler’s laws, their internal
logic remains opaque. This raises questions: How can we trust them in critical decisions?
How do we ensure they learn genuine patterns? Most importantly, how can they advance
scientific understanding rather than just prediction?

These questions drive this manuscript’s focus: developing artificial intelligence methods
that drive discovery through the creative exploration of machine learning models that are
interpretable and understandable by human researchers.

1.2 Exploration

Discovery often demands deviation. Scientific breakthroughs, like Kepler’s shift from cir-
cles to ellipses, require exploring beyond existing assumptions. Modern machine learning,
however, excels at interpolation within known data rather than extrapolation to novel
solutions.

Consider how a typical deep learning model works: it learns to recognize cats by aver-
aging across millions of cat photos, extracting the statistical patterns that define “catness.”
But crucially, such models cannot imagine a fundamentally new kind of cat—they can only
interpolate between examples they’ve seen. They are, in a sense, prisoners of their training
data.

Scientific discovery, in contrast, often requires extrapolation—the ability to conceive of
possibilities that lie outside known examples. When Einstein imagined riding alongside a
beam of light, he was not averaging across prior theories but exploring an entirely new way
of thinking about space and time (Norton 2012). This raises a fundamental question: how
can we create artificial systems capable of such creative exploration?

The answer may lie in moving beyond traditional objective-based optimization. Just
as evolution does not proceed with a predetermined goal but rather through the continu-
ous exploration of novel forms, we can design algorithms that prioritize discovering new
behaviors over optimizing specific metrics. This approach presents a radical departure from
conventional machine learning and optimization.
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Traditional optimization methods all share a common assumption: that the best way to
reach a goal is to continuously measure and reward progress toward that goal. Yet this
assumption can be deceptive. Like a climber fixated on reaching the summit who becomes
trapped on a local peak, objective-based search can become stuck in suboptimal solutions
precisely because it is too focused on improvement rather than exploration (Lehman and
Stanley 2011a).

Research that I have participated in or advised advances algorithmic exploration through
several complementary approaches. First, through Quality-Diversity optimization (Cully
et al. 2015a; Mouret and Clune 2015), we develop methods that evolve populations of
solutions that maximize both performance and behavioral novelty (Templier, Grillotti, et
al. 2024). Rather than seeking a single optimal solution, these algorithms maintain archives
of diverse, high-performing solutions—much like nature maintains a diversity of species
rather than converging on a single "best" organism.

Second, through curiosity-driven search (Le Tolguenec et al. 2022), we create systems
that are intrinsically motivated to explore their environment by seeking out novel states and
interactions. This approach mirrors how human scientists often make discoveries through
playful experimentation rather than directed search.

Finally, we apply these exploration techniques to stress-test critical systems, systemat-
ically searching for edge cases and failure modes that traditional testing might miss (Le
Tolguenec, Rachelson, Besse, et al. 2024). Like scientists probing the boundaries of a
theory, these methods actively seek out the unexpected rather than confirming the expected.

The key insight unifying these approaches is that meaningful discovery often requires us
to temporarily abandon the pursuit of obvious objectives. Just as Kepler had to be willing
to discard the perfect circles that had dominated astronomy for millennia, our artificial
discovery systems must be willing to explore seemingly unpromising directions that might,
paradoxically, lead to breakthrough solutions.

As we tackle increasingly complex challenges in science—from climate modeling to
drug discovery—this capacity for principled exploration becomes ever more crucial. We
need systems that can not only optimize within known parameters but also help us discover
entirely new possibilities. The methods presented in this manuscript demonstrate how we
can move beyond simple optimization toward true exploration-driven discovery.

1.3 Interpretability

Understanding requires transparency. When Kepler derived his laws of planetary motion
from Brahe’s observations, he could explain every step of his reasoning—from the rejec-
tion of perfect circles to the mathematical properties of ellipses that made them a better fit
for the data. This transparency was not merely incidental to his discovery; it was essential
to the advancement of astronomy. Other scientists could verify his calculations, chal-
lenge his assumptions, and ultimately build upon his insights to develop an even deeper
understanding of celestial mechanics.

Today, however, we face a paradox in scientific modeling. Our most powerful pre-
diction engines—deep neural networks—operate as black boxes, their internal workings
obscured behind billions of inscrutable parameters (Rudin 2019; Tjoa and Guan 2020).
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Consider AlphaFold (Jumper et al. 2021), which revolutionized protein structure predic-
tion by achieving unprecedented accuracy in determining how proteins fold. While this
breakthrough has enormous practical value, the model itself offers little insight into the
underlying physical principles governing protein folding. Scientists can use AlphaFold’s
predictions, but they cannot easily extract new biological understanding from how it makes
those predictions.

This opacity creates a fundamental limitation for scientific discovery. When a neural
network learns to predict El Niño events (Ham, Kim, and Luo 2019) or forecast extreme
weather (Bi et al. 2022) with high accuracy, it may have discovered important patterns
in the data—but if we cannot understand these patterns, we have not fully advanced our
scientific knowledge. We are left with a powerful oracle that can make predictions but
cannot explain the mechanisms behind them.

The standard response to this challenge has been to develop post-hoc explanation meth-
ods that attempt to interpret already-trained neural networks (Tjoa and Guan 2020). These
approaches use techniques like saliency maps or feature attribution to suggest which
inputs were most important for particular predictions. However, such explanations are
often unreliable and can be misleading (Rudin 2019). More fundamentally, they attempt
to reverse-engineer understanding from models that were not designed to be understood in
the first place.

My work proposes a different approach: developing machine learning models that are
interpretable by design. Rather than attempting to explain black-box models after the fact,
I advance methods that maintain transparency throughout the learning process. The key
insight is that interpretability need not come at the cost of performance—with proper
design, models can be both accurate and understandable.

Through genetic programming techniques like Cartesian Genetic Programming (CGP)
(Julian Francis Miller 2020), we have demonstrated that interpretable models can solve
complex control tasks while remaining fully decomposable and analyzable. Unlike neural
networks, these models represent solutions as computational graphs that can be read and
understood like computer programs. For instance, we have shown that CGP can learn to
play video games (Wilson et al. 2018) and control robots (Nadizar, Medvet, and Wilson
2024a) with performance competitive with deep learning approaches, while maintaining
complete transparency about their decision-making process.

Moreover, we have developed novel methods that extend these interpretable approaches
to handle diverse types of input data, from images to numerical measurements (De La
Torre et al. 2024). This enables interpretable modeling of complex scientific phenomena
that involve multiple data modalities—a crucial capability for modern scientific discovery.

My latest work explores the frontier of interpretable scientific modeling through Lan-
guage Model Genetic Programming (LMGP) (Hemberg, Moskal, and O’Reilly 2024). This
approach combines the pattern-recognition capabilities of large language models, massive
deep neural networks capable of high-level language use (Brown et al. 2020), with the
interpretability of genetic programming. While preliminary, this work shows that the direct
optimization of computer code can enable the automated discovery of scientific models that
can be easily understood and validated by human experts.

The implications of this research extend beyond any single scientific domain. By devel-
oping methods that can discover interpretable models from data, we enable a virtuous cycle
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of scientific understanding: models that can not only make accurate predictions but also
advance our theoretical understanding, leading to better models and deeper insights. This
represents a step toward automated scientific discovery that augments rather than replaces
human scientific reasoning.

1.4 Outline

This manuscript examines the automation of discovery through two key capabilities: explo-
ration and interpretability. While the ultimate goal is to advance scientific discovery,
particularly in climate science, the methodology is first developed and demonstrated using
standard benchmarks in artificial intelligence research, such as simulated robotic control
tasks.

The document is structured as follows: this chapter introduced the concept of discov-
ery as a process requiring both deviation from established solutions and understanding of
new findings. Chapter 2 focuses on exploration, detailing how optimization can be reimag-
ined as a search process. Through evolutionary algorithms and reinforcement learning,
the chapter develops methods that encourage systematic exploration of unknown solution
spaces. These concepts are demonstrated through robotic control tasks, where agents must
discover novel behaviors to achieve objectives.

Chapter 3 examines interpretability, showing how genetic programming can create mod-
els that perform complex tasks while remaining fully transparent. Using examples from
robotic control and game environments, the chapter demonstrates that interpretable mod-
els can match the performance of black-box approaches while providing clear insights into
their decision-making processes.

Chapter 4 shifts focus to scientific applications, particularly in climate science. This
chapter transitions from methodology development using AI benchmarks to addressing
real-world challenges. Applications in shoreline forecasting and El Niño prediction are
analyzed, illustrating how exploration and interpretability advance our understanding of
complex environmental systems.

Finally, in Chapter 5, I reflect on my research directions and the research that has been, in
part, under my direction. I motivate my current direction of climate modeling and conclude
with a proposed research project to apply AI methods to climate science.

The progression of focus presented in this work, from traditional benchmark tasks, to
a specific application in climate science, reflects a broader pattern in artificial intelligence
research. The field has often focused on specific, well-defined challenges to develop and
validate new methods. Chess served as an early benchmark, culminating in Deep Blue’s
victory over world champion Garry Kasparov (Seirawan, Simon, and Munakata 1997).
Image recognition became a key test through the ImageNet challenge, leading to break-
throughs that transformed computer vision (Krizhevsky et al. 2012). More recently, Go
provided the stage for AlphaGo to demonstrate how neural networks could master com-
plex strategic thinking (Silver et al. 2016). Alan Turing anticipated this approach in 1950,
writing in Turing (1950) that:

We may hope that machines will eventually compete with men in all purely intellectual fields.
But which are the best ones to start with? Even this is a difficult decision. Many people think
that a very abstract activity, like the playing of chess, would be best. It can also be maintained
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that it is best to provide the machine with the best sense organs that money can buy, and then
teach it to understand and speak English. This process could follow the normal teaching of
a child. Things would be pointed out and named, etc. Again I do not know what the right
answer is, but I think both approaches should be tried.

Today, both paths suggested by Turing have yielded fruit. Machines have mastered chess
and Go (Silver et al. 2016), while large language models can understand and generate
human language (Brown et al. 2020). Yet these achievements, while impressive, represent
only a narrow slice of human intellectual capability. In this manuscript, I argue that the
next frontier lies in scientific discovery itself.

This manuscript proposes a course toward that ambitious goal. While much of our
methodology development uses traditional AI benchmarks - simulated robots and Atari
games - these serve as controlled environments to develop the fundamental capabili-
ties needed for scientific discovery: systematic exploration and interpretable modeling. In
Chapter 4, we apply these methods to real scientific challenges in climate science, demon-
strating how techniques refined on benchmark tasks can advance our understanding of
complex natural systems. Finally, in Chapter 5, I detail directions to respond to the central
question of this manuscript - can artificial intelligence help us understand complex natural
phenomena and advance human knowledge?





2 Exploration

Most AI algorithms are objective-based. They seek to maximize or minimize some quan-
tifiable goal - modeling planetary movement in the solar system, predicting tomorrow’s
weather, or controlling a robotic arm. These objectives can be broken down into interme-
diate goals: how accurately does the planetary model match observed data? Did it rain as
much as predicted? How close did the robot get to picking up the object? These evalua-
tions guide algorithms toward solutions that better achieve their goals, predicting rain more
accurately or getting the robot to successfully grasp objects.

Natural evolution serves as a powerful inspiration for algorithmic optimization. Life
demonstrates a remarkable ability to find solutions in even the most extreme conditions. In
the darkness of Antarctic waters, evolution produced aquatic birds capable of incubating
their young (Li et al. 2014). In fire-prone forests, plants evolved seeds that require burning
to germinate (Lamont, He, and Yan 2019). Even in the scalding temperatures of volcanic
vents, certain bacteria thrive (Temple and Colmer 1951). The process of natural selection
consistently discovers ways to pass on genetic information across generations, even in
seemingly impossible circumstances.

The biological process of natural selection inspired the field of Evolutionary Computa-
tion (EC) (Fogel, Owens, and Walsh 1965; Holland 1975; Rechenberg 1978). Algorithms
in ECs, which I’ll call Evolutionary Algorithms (EAs), simulate key aspects of natural
selection by maintaining a population of candidate solutions, often called individuals.
These solutions are evaluated according to predefined objectives that quantify their fitness.
The most successful individuals are selected and modified through combination or muta-
tion - typically random processes, though they can incorporate problem-specific knowl-
edge. This process repeats iteratively until meeting stopping criteria or computational
limits (Mitchell 1998; De Jong 2017).

This manuscript focuses on EAs for two reasons. The first reason is due to their flexibil-
ity. The same algorithm can be used to optimize any sort of solution representation towards
any sort of goal. The only constraints are that the solution representation can be modified
automatically and that the objective function can be used to rank solutions. If those criteria
are met, the full family of EAs is open.

The second reason is that, of the many types of algorithms that optimize towards a
goal, evolutionary algorithms are quite good at exploring inherently (Lehman, Clune, and
Misevic 2018). There are multiple sources of randomness that encourage exploration: the
starting population is often generated randomly; the selection of successful individuals
is informed by their evaluation and random noise; and the modification of an individual is
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Figure 2.1: Evolution Algorithm loop. An initial population P0 is evaluated, then certain
individuals are selected based on the evaluation. The selection determines a set of individ-
uals to modify, which then creates the next population.

often random. All of this noise makes for good exploration, even if optimization is shooting
for a single objective. It is not so surprising that algorithms inspired by the unwieldy force
of natural selection rely so heavily on chance.

However, EAs still aim to progress towards some objective, and steady progress toward
a goal does not always lead to optimal solutions. Consider again the historical models
of planetary motion that relied on circular orbits. Astronomers spent centuries refining
these models, adding more circles to correct for observed errors. Yet no amount of incre-
mental improvement would have arrived at Kepler’s insight that the orbits were elliptical
- this required stepping back to consider a fundamentally different approach. Similarly,
objective-based search can become trapped in local optima, dead ends in the search space
where small changes no longer improve the evaluation function. The more ambitious the
goal, the more difficult it becomes to define an appropriate objective function and the more
likely the search is to be deceived by these local optima.

The core issue is that the objective function may not reward the intermediate steps that
ultimately lead to the best solutions. Consider a Chinese finger trap - while the goal is to
free one’s fingers, pulling them apart (the most direct action) yields no progress. Counter-
intuitively, one must first push the fingers together, seemingly moving away from the goal,
to solve the puzzle. The trap is deceptive because progress requires temporarily moving
further from the apparent objective (Lehman and Stanley 2011a).

An alternative to objective-based search is open exploration (Taylor et al. 2016). Meth-
ods like open-ended evolution and Novelty Search (Lehman and Stanley 2011a) maximize
behavioral diversity rather than a specific objective. They operate with minimal constraints
(Soros, Cheney, and Stanley 2016), allowing properties to emerge naturally - similar to
biological evolution, which has no explicit objective beyond the propagation of genetic
information. This approach often leads to creative solutions that objective-based methods
might never discover.
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However, pure exploration has its own limitations. While it can generate endless nov-
elty, much of that novelty may be irrelevant to solving practical problems. Consider an
algorithm that is generating bowls of oatmeal by manipulating the placement of oat flakes.
One could create an infinite number of unique oatmeal configurations by varying the posi-
tion of each flake. While each bowl would be technically novel, these differences are not
interesting if our goal is simply to make edible oatmeal (Earle, Togelius, and Soros 2021;
Compton 2016). Pure exploration can be inefficient, spending computational resources on
variations that don’t advance useful capabilities.

This tension between exploring new possibilities and exploiting known solutions is
known as the exploration-exploitation trade-off (Audibert, Munos, and Szepesvári 2009;
Sutton and Barto 2018). Exploitation - moving toward an objective - risks getting stuck in
suboptimal solutions. Exploration - seeking novelty - might never find practically useful
solutions. Different fields of AI handle this trade-off in different ways, from planning algo-
rithms to Reinforcement Learning (RL). In this manuscript, I focus on this trade-off in EC,
where exploration, creativity, and innovation in solutions has long been a focus of the field
(Lehman et al. 2020).

In this chapter, I illustrate the current challenges around exploration using two detailed
examples of exploration algorithms. These examples are drawn from PhD theses under my
supervision: those of Paul Templier and Paul-Antoine le Tolguenec. I begin with a back-
ground on exploration algorithms in EC, then present a contribution that achieves quality
with just enough diversity for exploration. This approach requires defining what type of
exploration is desired, but such definitions aren’t always obvious. To address this, I also
present Curiosity-ES, a method that uses artificial curiosity to guide exploration. Finally,
I give an example of how these exploration techniques can be applied to find software
flaws in critical aviation systems, showing how principled exploration enables practical
innovation.

2.1 Quality and Diversity

A core challenge in exploration is how to measure it. How does one express the set of solu-
tions already explored? How does one express that one solution is different than another, or
by how much they differ? One common approach is to first characterize a solution through
its behavior profile, a description of how it solves the problem. Consider a robot navigating
a maze: a complete description of its behavior would encompass the full path taken. How-
ever, this level of detail provides an unwieldy amount of information that may not serve
the ultimate goal of reaching the maze exit. A more practical approach is to use a simpler
behavioral descriptor, such as the robot’s final position.

We can formally express this by defining a behavioral function b : θ 7→Rm that maps an
individual θ to a set of m features relevant to the task. For maze navigation, the behavior of
an individual controller, also termed a “policy,” can be characterized by its terminal coor-
dinates b(θ) = (xfinal, yfinal). This behavioral representation enables measuring the distance
between two behaviors through a distance function d :Rm×Rm 7→R.

With behavior characterized and distance defined, exploration can be achieved by
searching for solutions that are different from previously found solutions. This is the idea
behind Novelty Search algorithms; these methods search by computing a novelty score
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for each individual (Lehman and Stanley 2011a). This score quantifies how different an
individual’s behavior is compared to others in the population or archive. Typically, this is
calculated as the average distance to the k-nearest neighbors in behavior space:

novelty(θ) =
1
k

k∑
i=1

d(b(θ), b(θi)) (2.1)

where b(θi) represents the k-nearest neighbors of b(θ) in behavior space. Novelty search
algorithms use this score for selection, focusing purely on maximizing behavioral diversity
without considering the original objective function.

However, as discussed above, exploration alone can lead to inefficiently looking through
solutions that, while different or novel, don’t help in solving a problem. In most cases,
there is some defined goal that an algorithm is used for, and exploration should be used
to innovate towards that goal. An early approach along this line, built on Novelty Search,
introduced local competition: similar individuals, based on their behavior, will compete
based on their objective fitness (Lehman and Stanley 2011b). In that way, both the quality
and diversity of solutions increase over time; these methods are known as Quality Diversity
(QD) algorithms (Pugh, Soros, and Stanley 2016; Cully and Demiris 2017).

MAP-Elites (Cully et al. 2015b) is a foundational QD algorithm that builds an archive of
high-performing but behaviorally diverse solutions. The algorithm partitions the behavior
space into discrete cells. When evaluating an individual θ, it is placed into the cell corre-
sponding to its behavior b(θ), say cell bi. If another individual ϕ already occupies cell bi

with a similar behavior, the two compete based on their fitness f on the main optimiza-
tion objective. If the new individual has superior fitness (for maximization, for example,
f (θ) > f (ϕ)), it replaces the incumbent in cell bi. To generate new individuals, the algorithm
randomly selects a parent from a filled behavior cell, improves upon it, and repeats this
process.

Sample
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Add/Replace
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Figure 2.2: The MAP-Elites algorithm. Individuals are sampled from an archive, then mod-
ified and evaluated. The new individual is placed into the archive cell corresponding to its
behavior if the cell is empty or the new individual has a better fitness than the individual
occupying the cell.
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MAP-Elites was first demonstrated for the exploration of the full range of possible walk-
ing behaviors for a robot. When the robot was later damaged, the diverse archive of walking
behaviors enabled rapid adaptation by switching to an alternative gait (Cully et al. 2015b).
This success spawned numerous derivative methods and applications in domains from
locomotion to robotic arm control (Cully and Demiris 2017; Pugh, Soros, and Stanley
2016; Sigaud 2023). However, while MAP-Elites excels at exploring the full spectrum of
possible solutions, it can be inefficient at optimizing solution quality.

Consider learning to play chess. One could study every possible movement pattern,
including clearly suboptimal ones. Take the "Bongcloud" opening, where a player advances
the pawn in front of their King and then moves the King forward early in the game. This
is widely considered one of the worst possible openings - it reduces winning chances and
creates numerous ways to lose. Exploring all possible winning strategies from this posi-
tion would be far less efficient than focusing on more promising openings. For effective
chess mastery, one would rather explore a limited diversity of useful possibilities. This idea
motivates the algorithm we’ll examine next, Quality with Just Enough Diversity (JEDi)
(Templier, Grillotti, et al. 2024).

2.2 Just Enough Diversity

In MAP-Elites, exploration is driven by randomly selecting “parent” solutions from the
archive as starting points for new variations. This approach ensures broad coverage of
possible behaviors, as even rarely-seen behaviors have an equal chance of being selected
for further exploration. In contrast, purely objective-focused algorithms like Evolution-
ary Strategy (ES) concentrate on finding better solutions according to the fitness function
(Hansen and Ostermeier 2001). ESs are a type of EAs that work especially well for con-
tinuous optimization, as they estimate and refine the distribution of a population around
the objective function (Rechenberg 1978). As such, they explore around high-performing
individuals, potentially missing behaviors that don’t immediately appear promising.

To illustrate this difference, consider how these algorithms perform on a walking
robot task. MAP-Elites discovers a wide variety of walking gaits, from slow but stable
movements to rapid but unstable ones. It maintains this diversity because it gives equal
opportunity to all discovered behaviors. An ES, however, quickly converges to a single
type of movement that maximizes forward speed, discarding alternative gaits that might
prove useful in different circumstances.

This difference is visualized in Figure 2.3, which shows the behavior archives of the two
methods after optimization, as well as the number of evaluations used in each part of the
behavior archive. While MAP-Elites achieves a higher coverage of all possible behaviors, it
spends a large amount of evaluations on behaviors that do not have high fitness. The ES, on
the other hand, doesn’t evaluate most behaviors for long, instead concentrating evaluations
at one behavior point. While this isn’t highly exploratory, it does result in a much higher
maximum fitness for this task.

What if we could combine the best aspects of both approaches? Rather than maintain-
ing equal diversity everywhere or focusing solely on optimization, we could intelligently
decide which behaviors are worth exploring further. This is what happens in JEDi, an
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(a) MAP-Elites fitness (max: 2118) (b) MAP-Elites budget (log)

(c) ES fitness (max: 3988) (d) ES budget (log)

(e) JEDi fitness (max: 5535) (f) JEDi budget (log)

Figure 2.3: Fitness and number of solutions tried in each behavior cell for MAP-Elites,
ESs, and JEDi on a walking robot task. Figure from Templier, Grillotti, et al. (2024).

algorithm that learns which areas of the behavior space tend to yield useful solutions and
focuses exploration around those behaviors.

2.2.1 JEDi
The JEDi algorithm operates in cycles of exploration and optimization. Like MAP-Elites,
it maintains an archive of diverse solutions, but it uses this archive in a more strategic way.
Each cycle begins by analyzing the relationship between behaviors and performance using
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machine learning - specifically, a Gaussian Process model (Williams and Rasmussen 1995)
that learns to predict how well a solution might perform based on its behavior. This learned
model then helps select promising new behaviors to target.

Think of this process like a scientist deciding which experiments to run next. Rather
than trying everything possible or focusing only on what’s already known to work, the
scientist uses their understanding of previous results to make educated guesses about which
new directions might be most fruitful. Similarly, JEDi uses its learned model to identify
behaviors that show promise, either because they’re predicted to perform well or because
there’s uncertainty about their potential.

Once target behaviors are selected, JEDi launches focused optimization efforts around
solutions in the archive that are similar to these targets. These local searches balance two
objectives: improving the solution’s performance on the main task while steering it toward
the desired target behavior. This dual-objective optimization is handled through a weighted
scoring system that can emphasize either exploration of new behaviors or exploitation of
known good solutions. The full algorithm of JEDi is described in Algorithm 1, and in
Templier, Grillotti, et al. (2024) for more detail.

The balance between exploration and exploitation is controlled by a parameter α. When
α is high, the algorithm prioritizes reaching new target behaviors; when low, it focuses
more on improving performance. This parameter can be gradually adjusted during the
search, similar to how a scientist might start with broad exploration and then narrow their
focus as they better understand the problem.

Algorithm 1 JEDi

Require: iterations L, emitters nES, generations N, target selection T , repertoire R,
evaluation F, population λ, solution θ, parameter distribution σ, target weight α

1: Initialize R with ninit random genomes
2: for l = 1 to L do ▷ JEDi iterations
3: for i = 1 to nES do ▷ ES Emitters
4: bi = Tl(R) ▷ Sample target behavior
5: θ1 = arg minθ,b∈R ∥bθ − bi∥ ▷ Select start solution from the repertoire
6: for k = 1 to N do ▷ N generations
7: for i = 1,λ do ▷ λ individuals
8: θi

k∼N (θk, Iσ) ▷ sample individual
9: fθi

k
, bθi

k
= F(θi

k) ▷ Evaluate solutions
10: R← (θi

k, fθi
k
, bθi

k
) ▷ Update the repertoire

11: si
k = fθi

k
+α∥bθi

k
− bi∥ ▷ Compute scores

12: end for
13: θk+1← θk + 1

σλ

∑λ
j=1(θj

k− θk)sj ▷ Update ES center
14: end for
15: end for
16: Tl+1← (Tl, R) ▷ Update target behavior model
17: end for
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Consider training a robot to walk efficiently while maintaining stability. Traditional opti-
mization might focus solely on speed, leading to fast but risky gaits. MAP-Elites would
explore all possible walking styles equally, including many impractical ones. JEDi, how-
ever, would learn that certain combinations of stability and speed tend to yield good results,
and would focus its exploration around these promising regions while still maintaining
enough diversity to discover unexpected solutions.

This approach has proven particularly effective on complex control tasks where the rela-
tionship between behavior and performance isn’t obvious in advance. By learning this
relationship during the search process, JEDi can guide exploration toward behaviors that
are both novel and likely to be useful.

2.2.2 Experimental evaluation
The effectiveness of JEDi was evaluated on two types of challenges: maze navigation and
robotic control tasks. These environments represent different aspects of the exploration-
exploitation challenge. In maze navigation, the algorithm must discover paths through
complex environments where the most direct route may be blocked. In robotic control,
it needs to find stable and efficient ways to move various types of robots, from a simple
half-cheetah model to more complex walking robots.

An experimental comparison of JEDi to other algorithms is presented in Figure 2.4.
JEDi shows competitive performance to exploration-focused algorithms like MAP-Elites
on tasks that require high exploration, the maze navigation tasks. When the task requires
less exploration and more exploitation, JEDi is competitive with the ES that is fully
objective-based.
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Figure 2.4
Violin plots of final max fitness results for maze exploration (row 1) and robotics control tasks (row 2). The solid
line in each violin is the median. Reaching the dotted line at -250 in a maze means an agent has reached the target.
Figure adapted from Templier, Grillotti, et al. (2024).

A particularly interesting case emerged in the "Walker" environment, in which the solu-
tion controls the movement of a robot, with the goal of making the robot walk forward.
Both ESs and JEDi discovered solutions that achieved high performance, but through
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markedly different means. The ES converged to a single, highly optimized walking gait.
JEDi, in contrast, found multiple distinct ways of stable walking, each with its own
advantages. This diversity provides robustness, offering alternative strategies if conditions
change.

The budget distribution visualizations reveal how JEDi allocates its computational
resources more intelligently than either MAP-Elites or ESs. As shown previously in
Figure 2.3, MAP-Elites spreads its budget evenly and ES concentrates it narrowly. JEDi
adapts its exploration based on learned patterns of success, focusing more resources
on behaviors that show promise while maintaining enough diversity to discover new
possibilities.

2.2.3 Discussion
JEDi represents a step toward automated discovery by demonstrating how algorithms can
learn to explore efficiently. Like a skilled researcher, it doesn’t simply try everything pos-
sible or focus solely on what’s already known to work - it learns which directions are
worth investigating and adapts its strategy accordingly. This balance between broad explo-
ration and focused optimization mirrors how human scientists work, combining systematic
investigation with informed intuition about promising research directions.

Other researchers have recognized this need for intelligent exploration in automated dis-
covery. The Covariance Matrix Adaptation MAP-Elites (CMA-ME) algorithm (Fontaine
et al. 2020) balances exploration from MAP-Elites with exploitation from the precise
local optimization method Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) (Hansen and Ostermeier 2001). Fontaine and Nikolaidis (2023) builds on CMA-ME
by introducing an annealing method that regulates between exploration and exploita-
tion. Paolo et al. (2021) tackles the same balancing issue in cases where the objective
function only rewards individuals in rare conditions, termed sparse rewards. Each of
these approaches shares JEDi’s core insight: effective discovery requires both breadth of
exploration and depth of understanding.

Looking forward, several promising directions could further enhance JEDi’s capabilities
for automated discovery. One is the integration of more sophisticated machine learning
models to better predict which behaviors warrant investigation. Another is the develop-
ment of adaptive methods for managing the exploration-exploitation trade-off, perhaps
drawing inspiration from how human researchers adjust their research strategies as they
gain understanding of a problem domain.

The interaction between human actors and algorithms like JEDi also deserves further
exploration. Currently, human expertise is integrated into JEDi through the definition of
problem representation, the objective function, and the behavior descriptions. While JEDi
discovers solutions autonomously within these definitions, its discoveries might be even
more valuable when combined with human insight. For instance, when JEDi finds multiple
ways to solve a problem, human experts might recognize patterns or principles that could
guide future research.

In the context of automated scientific discovery, JEDi demonstrates a crucial principle:
effective exploration isn’t just about trying everything possible, but about learning where to
look. By combining the breadth of QD algorithms with the focused optimization of ES, it
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points toward a future where automated systems can not only assist in scientific discovery
but actively guide it in promising directions.

This theme of guided exploration sets up our next investigation into curiosity-driven
search, where we’ll examine how intrinsic motivation can drive discovery even without
explicit behavior descriptions. The transition from JEDi’s learned guidance to curiosity-
based exploration represents another step toward more autonomous discovery systems.

2.3 Curiosity

Children explore their world through play, driven by an innate curiosity about things they
don’t yet understand. When a toddler encounters a new toy, they might shake it, taste it,
or drop it repeatedly - not to achieve any particular goal, but to learn how it behaves. This
intrinsic motivation to explore the unknown turns out to be a good principle for machine
learning as well.

Traditional approaches to exploration in RL and EC often rely on explicit rewards or
behavior descriptions to guide search. But what if we could create algorithms that, like
children, are naturally drawn to explore what they don’t understand? This insight led to
the development of curiosity-driven exploration methods (Schmidhuber 1991; Pathak et
al. 2017).

Machine learning algorithms are usually trained to predict some quantity, so the expres-
sion of curiosity can be formulated as situations that an agent finds difficult to predict.
Just as a child might be fascinated by a toy with unexpected behaviors, these algorithms
are drawn to parts of their environment where their predictions fail. This creates a natu-
ral drive to explore novel situations without requiring any external guidance about what
constitutes interesting or valuable behavior.

Early implementations of this concept used simple counting methods - rewarding agents
for visiting previously unseen states (Brafman and Tennenholtz 2002). More sophisti-
cated approaches emerged with the development of prediction-based curiosity (Burda et
al. 2018; Eysenbach et al. 2019). In Pathak et al. (2017), an agent maintains an inter-
nal model that tries to predict how the environment will respond to its actions. When the
model’s predictions are inaccurate, it signals that the agent has found something novel
worth exploring.

This predictive approach to curiosity has compelling advantages. First, it scales natu-
rally to complex environments where explicitly counting states or categorizing behaviors
becomes impractical. Second, it creates a curriculum where agents progress from simple
to complex behaviors as their predictive models improve.

The algorithm we developed, called Curiosity-ES, combines these ideas with ESs. This
method uses the formulation of Curiosity from Pathak et al. (2017), an Intrinsic Curiosity
Module (ICM) - a neural network that learns to predict the consequences of the agent’s
actions. The prediction error from this module serves as an bonus fitness value for the ES,
encouraging the evolution of policies that seek out novel, unpredictable situations.

2.3.1 Curiosity-ES
Curiosity-ES combines the exploratory nature of curiosity-driven learning with the robust
optimization capabilities of ESs. The algorithm works by maintaining two parallel systems:
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an evolutionary process that generates and improves possible solutions, and a curiosity
module that guides exploration toward novel behaviors.

The evolutionary component maintains a population of candidate solutions and gradu-
ally improve them through the previously described process inspired by natural selection.
In our case, each "individual" in the population is an Artificial Neural Network (ANN)
that controls how an agent acts in its environment. The parameters of the neural network
are optimized by the ES, modifying the agent’s behavior. We use a classic ES for continu-
ous optimization, CMA-ES (Hansen and Ostermeier 2001), in its separable form (Ros and
Hansen 2008).

The innovation in Curiosity-ES comes in how we evaluate the solutions. Traditional
evolutionary algorithms measure how well each solution achieves the desired goal - for
instance, how quickly a robot reaches its destination. Curiosity-ES, however, considers
two factors: the traditional "extrinsic" reward for achieving goals, and an "intrinsic" reward
based on Curiosity.

This curiosity reward is computed using the ICM from Pathak et al. (2017), which con-
sists of three ANNs working together to predict the next state. The three networks are an
encoder that converts raw environmental states into a more manageable form, a forward
model that tries to predict how actions will affect the environment, and an inverse model
that helps ensure the encoder learns meaningful features.

As an agent interacts with its environment, the ICM attempts to predict each transition
- each change from one state to another resulting from the agent’s actions. The prediction
error serves as our measure of curiosity. Just as a child might be more interested in a toy
that behaves unexpectedly, our algorithm assigns higher intrinsic reward to transitions it
finds difficult to predict. The full algorithm of Curiosity-ES is presented in Algorithm 2.

Algorithm 2 Curiosity-ES

Require: µ,λ,σ,α,αICM ,β, γ, m, p, N,φ, wj

Initialize : θ0, wf , wi, we,D
for k = 1, N do ▷ N generations

for i = 1,λ do ▷ λ individuals
θi

k∼N (θk, Iσ) ▷ sample individual
fe, τ = f (θi

k),Γ(θi
k) ▷ fitness and trajectory

fi =
∑T−1

t=0 γT−1−t ∥Fwf (ϕwe (st), at)−ϕwe (st+1) ∥2 ▷ curiosity over trajectory
fθi

k
=φ(fe−µfe )/σfe + (1−φ)(fi−µfi )/σfi ▷ global fitness

D←D∪ {(sj+1, aj, sj)∼U(τ )|j∈ [0, m]} ▷ add m transition to D
end for
{θj|j∈ [1,λ]} = sort((θi

k, fθi
k
), i∈ [1,λ]) ▷ sort individuals by fitness

∇θk = 1
σµ

∑µ
j=1(θj− θk)wj ▷ estimate gradient

θk+1← θk +α∇θk ▷ update θ

for l = 1, p do
LICM(wi, wf , we) = (1−β)LI +βLF ▷ ICM loss over D
w←w +αICM∇wLICM , w∈ (we, wi, wf ) ▷ update ICM weights

end for
end for
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The combination of traditional rewards and curiosity is controlled by a single parameter
φ, which determines how much weight to give each factor. When φ is close to 1, the sys-
tem focuses mainly on achieving explicit goals. When it’s closer to 0, exploration through
curiosity takes precedence. In practice, we found that a value of 0.8 works well - enough
emphasis on goals to make progress, but sufficient curiosity to maintain exploration.

The result is an algorithm that can discover solutions in environments where tradi-
tional approaches struggle - particularly in situations with sparse rewards, where feedback
about success is rare and difficult to find. By following its curiosity, the system can learn
to navigate complex environments even before it discovers how to achieve its ultimate
objectives.

2.3.2 Experimental Evaluation
To understand how curiosity-driven exploration works in practice, we tested Curiosity-ES
on two types of challenges: maze navigation and robotic control. These environments rep-
resent different aspects of the exploration challenge. Maze navigation requires discovering
paths through complex environments where the most direct route may be blocked. Robotic
control tasks demand finding stable and efficient ways to move various types of robots,
from a simple half-cheetah model to more complex walking robots.

The results on the maze environments show how Curiosity leads to exploration.
Figure 2.5 shows the final states reached by CMA-ME (Fontaine et al. 2020), Novelty
Search Evolutionary Strategy (NS-ES) (Conti et al. 2018), and Curiosity-ES. Consider in
particular the "SNAKE" maze, where the path to the goal follows a winding S-shaped
pattern. Traditional optimization methods tend to get stuck here because moving directly
toward the goal (which seems like the right thing to do) actually leads to dead ends.
Quality-diversity algorithms like CMA-ME can eventually find solutions through exten-
sive exploration, but they spend considerable computational effort exploring areas that
don’t lead to successful paths.

Curiosity-ES approached these mazes differently. Rather than being drawn toward the
goal or trying to catalog all possible behaviors, it was naturally attracted to areas where
its predictions failed. This led to an interesting pattern of exploration: the system quickly
became "bored" with the repetitive corridors of the SNAKE maze where movement was
predictable. Instead, exploration is focused on corners and the end of the maze, where the
consequences of actions were harder to predict.

The effectiveness of this approach becomes clear when we look at not just whether
solutions were found, but how efficiently they were discovered. While MAP-Elites would
often find paths to the goal first, Curiosity-ES discovered notably more efficient routes.
This makes intuitive sense - by maintaining curiosity about transitions through the maze,
the system naturally seeks out smoother, more efficient paths rather than being satisfied
with the first solution it finds.

In Figure 2.6, we can see the total reward gained by policies optimized by various meth-
ods on robotic control tasks, as well as the percentage of possible terminal states reached. In
these environments, agents needed to learn complex behaviors like manipulating objects or
maintaining balance while walking. Traditional optimization methods typically converge
to a single type of movement that maximizes immediate performance. ESs, for instance,
might find one stable walking gait and continuously refine it. Curiosity-ES, in contrast,
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SNAKE US HARD

CMA-ME

NS-ES

Curiosity-ES

Figure 2.5: Final states reached in the Maze Navigation task by CMA-ME (top), NS-ES
(middle), and Curiosity-ES (bottom). Individual points are semi-transparent; color indi-
cates density. Figure adapted from Le Tolguenec et al. (2022).

discovered multiple distinct ways of achieving its goals. Surprisingly, that results not only
in greater exploration, but in a quicker convergence to high-reward behaviors.

These results point to a broader insight about automated discovery: the most valuable
solutions aren’t always the most obvious ones. By maintaining curiosity about unexplored
possibilities, systems can discover innovative approaches that might be overlooked by more
directly goal-focused methods. This capability becomes particularly important as we move
from controlled environments to real-world applications, where adaptability and robustness
are crucial.
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Figure 2.6: Top: the sum reward of the best solution in each generation on the three con-
trol task environments. Bottom: The percentage of discrete terminal behaviors reached
throughout search. Figure adapted from Le Tolguenec et al. (2022).

2.4 Exploring Critical Systems

While Curiosity-ES showed promising results on standard robotics and navigation tasks, it
was developed for the testing of critical systems. Specifically, the goal was to use explo-
ration to find flaws in an airplane software system. This work is presented fully in Le
Tolguenec, Rachelson, Besse, et al. (2024).

High-assurance systems, like those in aviation, must function reliably even under
extreme conditions. These systems typically employ redundancy and protective mech-
anisms to prevent failures. Yet this very complexity, intended to improve safety, can
paradoxically introduce new vulnerabilities. Consider automated vehicles experiencing
"phantom braking" - engaging emergency brakes when no actual danger exists - or rail-
way systems where redundant safety units unexpectedly interfere with each other. These
examples highlight how dependability mechanisms, despite their crucial role in safety, can
create new and subtle failure modes.

In this study, we apply Curiosity-ES to search for potential failures in an aircraft con-
trol system that uses paired command and monitoring units. This architecture employs
two independent units to compute control orders, comparing their outputs to detect faults.
While the units may disagree slightly due to normal variations, excessive disagreement
triggers a fault detection. The challenge lies in finding corner cases where properly
functioning units might still produce concerning disagreements - a task that has proven
particularly difficult for traditional testing approaches.

This scenario presents an ideal test case for curiosity-driven exploration. The system’s
complexity - arising from multiprocessor architecture, varying computation periods, and
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floating-point calculations - makes traditional formal analysis impractical. Curiosity-ES,
with its ability to systematically explore unfamiliar system states, offers a fresh approach
to discovering potential vulnerabilities that might be overlooked by conventional testing
methods.

2.4.1 Critical software system

Figure 2.7: The COM architecture, which calculates control orders for the elevator surface.
The MON architecture is equivalent and provides the binary variable of ground contact to
the COM. Figure from Le Tolguenec, Rachelson, Besse, et al. (2024).

Aircraft control systems must balance performance with safety. The Command/Mon-
itor (COM/MON) architecture achieves this through a system of checks and balances.
As shown in Figure 2.7, each critical control function is performed by two independent
units - a command unit that issues control orders and a monitoring unit that verifies these
decisions.

Both units independently compute control orders for the aircraft’s surfaces based on
sensor data. In our study, we focus on the elevator control during landing, where precise
adjustments are crucial. While the units perform identical calculations, they operate on
slightly different time scales due to their independent clocks. This asynchrony, though
minor, creates subtle differences in how each unit samples and processes incoming data.

The specific scenario we examine, illustrated in Figure Figure 2.8, involves the criti-
cal transition between flight and ground modes during landing. When the aircraft touches
down, the control system must rapidly switch from flight-optimized to ground-optimized
parameters. This transition relies on detecting ground contact through sensors in the land-
ing gear. The scenario includes the possibility of a "bounce" - where the aircraft briefly
returns to air after initial ground contact, requiring another transition between control
modes.
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Figure 2.8: The flight scenario. The aircraft is initialized in a landing pattern where bounc-
ing is possible based on the given controls. The different activation phases of the flight
control law and ground control law are shown in background color. Figure from Le
Tolguenec, Rachelson, Besse, et al. (2024).

Each unit samples various flight parameters - pitch rate commands, actual pitch rates,
and ground contact signals - at specific intervals. They then process this data through con-
trol laws that differ between flight and ground modes. A synchronization mechanism helps
manage transitions between these modes, and rate limiters ensure smooth control surface
movements. While this architecture provides robust fault detection, it also creates oppor-
tunities for the units to temporarily disagree about the aircraft’s state, particularly during
mode transitions.

Figure 2.9: Test architecture overview. Figure from Le Tolguenec, Rachelson, Besse, et
al. (2024).

To systematically search for potential disagreements between the COM and MON units,
we developed a testing framework based on the principles of Adaptive Stress Testing (R.
Lee et al. 2015). As shown in Figure 2.9, this framework combines our COM/MON sys-
tem model with a high-fidelity aircraft simulator, JSBSim (Berndt 2004). An intelligent
agent interacts with this integrated simulation, playing two roles simultaneously: it acts as
the pilot by controlling the aircraft’s surfaces, and it manipulates the timing differences
between the COM and MON units.

The JSBSim flight dynamics model provides realistic aircraft behavior, while our COM/-
MON implementation captures the intricacies of the control system architecture. These
components interact in a closed-loop system, with the simulator operating synchronously
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and deterministically. The artificial timing differences between units are created by adjust-
ing their internal clocks within the simulation - a crucial capability for exploring potential
failure modes.

Finding edge cases in this system is particularly challenging because potential failures
emerge from complex interactions between multiple elements: timing differences in how
units sample sensor data; mode transitions triggered by ground contact; the continuous
physics of aircraft motion; and multiple control laws operating at different frequencies.
This combination of discrete mode switches and continuous dynamics creates a vast space
of possible behaviors that must be systematically explored to ensure safety.

2.4.2 Finding failure cases
We tasked different search methods with finding scenarios that could cause significant
disagreement between the COM and MON units. The methods included a simple Monte
Carlo baseline that randomly samples control inputs (Mooney 1997), a standard Evolu-
tion Strategy (sCMA-ES) (Ros and Hansen 2008), and Curiosity-ES (Le Tolguenec et
al. 2022). Each method could modify two key parameters: the pilot’s pitch rate commands
and the timing difference between the COM and MON units. Success was measured by the
magnitude of disagreement between the units’ computed control orders.

Figure 2.10: (top) Maximum fitness per generation during evolution for the three different
methods. (bottom) Maximum fitness accumulated over evolution. Lines indicate the mean
over 5 trials, and ribbons the standard deviation. Figure from (Le Tolguenec, Rachelson,
Besse, et al. 2024).

Both evolutionary approaches significantly outperformed random sampling, but in dif-
ferent ways. As shown in Figure 2.10, sCMA-ES quickly discovered policies that created
large disagreements, showing consistent performance across multiple trials. Curiosity-ES,
while more variable in its exploration, ultimately found policies that generated even larger
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Figure 2.11: Temporal progression of the disagreement ∆δC/M
q for the best policy by each

method. Figure from (Le Tolguenec, Rachelson, Besse, et al. 2024).

disagreements. Figure 2.11 illustrates how the best policy from Curiosity-ES maintained
higher levels of COM/MON disagreement throughout the landing sequence.

Figure 2.12: Temporal progression of the front gear compression for the three best policies.
Both ES methods create many bounces to exploit the synchronization function. Figure from
(Le Tolguenec, Rachelson, Besse, et al. 2024).

Analysis of the successful policies revealed an intriguing pattern: the evolutionary
methods had discovered that rapid bouncing during landing could exploit the system’s
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mode-switching mechanism. As shown in Figure 2.12, both ES methods learned to cre-
ate multiple bounces, unlike the smoother landings produced by random sampling. These
bounces forced frequent transitions between flight and ground control modes. Since the
COM and MON units operated on slightly different timescales, they could temporarily
disagree about which mode to use, amplifying their differences in computed control orders.

Figure 2.13: Visualization of policy diversity using dimensionality reduction. Each point
represents a different policy. Top row shows the distribution of control strategies when
analyzed by their frequency components. Bottom row shows how these policies affect the
system state. Colors in the rightmost plots indicate the level of COM/MON disagreement
achieved. Figure from (Le Tolguenec, Rachelson, Besse, et al. 2024).

While both evolutionary methods found the bouncing strategy, Curiosity-ES discovered
a broader range of failure cases. To visualize this diversity, we analyzed the policies in
two ways, as shown in Figure 2.13. First, we characterized each policy by the frequencies
present in its control signals, reducing this complex frequency spectrum to two dimensions
through principal component analysis. This revealed that sCMA-ES policies cluster tightly
together, suggesting they all use similar control patterns. In contrast, Curiosity-ES policies
spread across the space, indicating a variety of different control strategies.

We also examined how these policies affected the system state by analyzing the most
critical states visited during each policy’s operation. This analysis revealed that Curiosity-
ES not only found diverse control strategies but also explored a wider range of system
behaviors. Notably, some of the highest-disagreement scenarios were discovered not
through direct optimization but during Curiosity-ES’s exploratory phases. These diverse
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failure cases provide engineers with a more comprehensive understanding of potential
system vulnerabilities, rather than just a single worst-case scenario.

This broader exploration highlights a key advantage of curiosity-driven testing: rather
than converging on a single exploit, it continues to search for qualitatively different
ways the system might fail. Such comprehensive exploration is particularly valuable in
safety-critical systems, where understanding the full range of potential failure modes is as
important as finding the most severe ones.

2.5 Perspectives

This chapter has demonstrated two complementary approaches to exploration in automated
discovery. JEDi showed how learning the relationship between behaviors and perfor-
mance can guide exploration toward promising areas, while Curiosity-ES revealed how
intrinsic motivation can drive systematic exploration without requiring explicit behavior
descriptions. Both methods achieved state-of-the-art results on standard benchmarks, and
Curiosity-ES proved particularly effective at finding diverse failure cases in critical aviation
software.

In this chapter, I focused heavily on evolutionary computation for simplicity, as this
manuscript as a whole mostly covers evolutionary methods. However, the field of RL
offers increasingly sophisticated approaches to exploration that are worth discussing. Fur-
thermore, the complementary strengths of EC and RL point toward hybrid approaches
that combine the two. Finally, and perhaps most importantly, these exploration methods
show great promise for scientific discovery, where finding diverse solutions and unexpected
phenomena is crucial for advancing understanding.

2.5.1 Exploration in Reinforcement Learning
While this chapter has focused on evolutionary approaches to exploration, RL offers
complementary insights into how artificial systems can systematically explore their envi-
ronments. Like a student trying different approaches to solve a math problem, RL agents
must balance trying new strategies against exploiting what they already know works well.

Early RL methods approached exploration simply by counting which states had been vis-
ited, encouraging agents to visit unexplored areas (Brafman and Tennenholtz 2002; Kearns
and Singh 2002). However, this becomes impractical in complex environments where the
number of possible states is enormous. Imagine trying to count every possible configuration
of a robot’s joints - the numbers quickly become unmanageable.

Recent approaches have taken inspiration from human learning. Just as curiosity drives
children to explore their environment, some RL methods give agents intrinsic rewards for
discovering new or unexpected situations (Pathak et al. 2017; Burda et al. 2018). Oth-
ers focus on developing diverse skills, much like how a musician might practice different
techniques to master an instrument (Eysenbach et al. 2019).

Our work has advanced these ideas through the Learning Diverse Skills through Suc-
cessor State Representations (LEADS) algorithm, a method that helps agents learn a
diverse set of skills that comprehensively cover their environment (Le Tolguenec, Teichteil-
Koenigsbuch, et al. 2024). Rather than just maximizing performance on a specific task,
LEADS encourages agents to develop different ways of interacting with their environment.
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For example, a robot might learn not just to walk forward, but also to walk backwards,
sideways, or even jump - creating a rich repertoire of movements.

Modern RL methods like those mentioned above typically maintain a “replay buffer”
that stores past experiences, allowing them to learn from their entire history of exploration.
This approach encourages sophisticated, data-driven characterizations of exploration. Dif-
ferent behaviors can be defined by measuring distances between distributions of states in
the replay buffer, allowing behavior descriptions to emerge naturally from the data rather
than being manually specified.

This is a direction that evolutionary methods are beginning to adopt, although not
without difficulties. It is, for example, one of the reasons we didn’t directly relate JEDi
to Curiosity-ES: while both methods guide exploration, Curiosity-ES requires imple-
menting mechanisms for storing historical data and training neural networks that aren’t
typically present in evolutionary frameworks. Traditional evolutionary algorithms discard
most information about past individuals, keeping only their fitness and behavior charac-
terization. A promising direction is methods that bridge this gap by incorporating replay
buffer mechanisms into evolutionary frameworks to enable more data-driven approaches
to characterizing and guiding exploration.

2.5.2 Combining ES and RL
The previous section highlighted how RL’s data-driven approach to exploration differs
from evolutionary methods. Yet these approaches are complementary - evolution excels
at maintaining diverse solutions, while RL efficiently learns from individual experiences.
This suggests that combining them could create more effective methods for exploration
and discovery.

Early attempts to merge these approaches focused on running them in parallel, with
occasional exchange of information between them (Sigaud 2023). The most straightfor-
ward form of exchange is "actor injection," where solutions found by RL are inserted into
the evolutionary population (Bodnar, Day, and Lió 2020; Khadka and Tumer 2018). The
intuition is simple: if RL finds a good solution through gradient-based learning, why not
share it with the evolutionary process?

However, our research revealed a subtle problem with this approach. When using Evo-
lution Strategies (ES), which maintains a statistical distribution over solutions rather than
just a population of individuals, we found that RL solutions tend to drift away from this
distribution over time. This "genetic drift" means that injecting RL solutions can actually
harm the evolutionary process rather than help it.

To address this, we developed Genetic Drift Regularization (GDR), which adds a simple
constraint to the RL training process (Templier, Rachelson, et al. 2024). GDR keeps RL
solutions close to the ES distribution while still allowing them to improve. This enables
effective collaboration between the two methods - RL can efficiently optimize solutions
while evolution maintains diversity and explores alternative possibilities.

This hybrid approach points toward a broader opportunity in automated discovery. RL’s
ability to learn efficiently from experience could enhance evolutionary exploration, while
evolution’s capacity for maintaining diverse solutions could help RL avoid getting stuck
in local optima. Nilsson and Cully (2021) offers an example of this combination, using
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gradient-based learning on top of a MAP-Elites archive. Future work could extend this inte-
gration, perhaps using RL’s sophisticated exploration mechanisms to guide evolutionary
search, or using evolutionary diversity maintenance to help RL develop robust solutions.

2.5.3 Exploration for Scientific Discovery
The methods developed in this chapter, while demonstrated on robotics and software
testing, point toward a broader vision of automated discovery. Just as JEDi and Curiosity-
ES found diverse solutions in their respective domains, similar approaches could help
scientists explore complex scientific phenomena and discover unexpected patterns.

Our work on aircraft safety systems particularly illustrates this potential. Traditional
testing might focus on finding the single worst-case scenario, but Curiosity-ES revealed
multiple, qualitatively different ways the system could fail. This diversity of cases provided
engineers with a richer understanding of potential vulnerabilities than any single failure
case could offer. Similarly, in scientific exploration, finding multiple different explanations
for a phenomenon often proves more valuable than finding a single, seemingly optimal
solution.

The flexibility of these exploration methods is crucial for scientific applications. Sci-
entists can guide exploration by defining behavior descriptions that match their research
interests, just as we defined relevant behaviors for robot locomotion or software testing.
When using evolutionary methods, the final result is not a single solution but a population
of alternatives, allowing researchers to examine different possibilities and choose those
that warrant further investigation.

Exploration encourages algorithms to uncover the unexpected. In our robotics experi-
ments, JEDi discovered solutions that surprised us. On the ant maze environment, an ant
robot is expected to navigate a maze. Rather than traversing a path through the maze,
exploration lead to a faster solution - jumping over the walls. Similarly, Curiosity-ES found
numerous failure cases in a thoroughly-tested aviation system that traditional methods like
Monte Carlo sampling missed. This ability to discover unexpected phenomena is perhaps
the most valuable feature for scientific applications, where breakthrough insights often
come from observing the unexpected.

However, for these methods to truly advance scientific understanding, humans must be
able to comprehend and learn from the solutions they discover. A robot that solves a maze
in an unexpected way is interesting, but its applicability is limited if we don’t understand
how it works. This need for comprehensible results motivates the focus of our next chapter:
developing interpretable models that can help explain the patterns and solutions discovered
through automated exploration.



3 Interpretability

Since the groundbreaking application to image classification, (Krizhevsky, Sutskever, and
Hinton 2012), deep learning has driven remarkable results across a wide range of domains,
from natural language processing, to image generation, to robotic control. These successes
stem, in part, from the universal approximation properties of Artificial Neural Networks
(ANNs) - given sufficient size and training data, neural networks can learn to represent
virtually any function (Funahashi 1989; Lu and Lu 2020). In the previous chapter, we saw
how neural networks serve as flexible function approximators in control tasks, enabling
complex behaviors to emerge through optimization.

However, these capabilities come at a cost: neural networks operate as black boxes, their
internal decision-making processes opaque even following complex analysis (Rudin 2019).
When AlphaGo defeated world champion Lee Sedol at Go, it made moves that expert
players initially thought were mistakes, only to later recognize their profound strategic
value (Silver et al. 2017). But even after analysis, the exact reasoning behind these moves
remained unclear. The neural network had learned effective strategies, but could not be
used to explain the reasoning behind them.

The standard response to this challenge has been to develop post-hoc explanation meth-
ods that attempt to interpret already-trained neural networks (Angelov et al. 2021). These
approaches use techniques like saliency maps or feature attribution to suggest which inputs
were most important for particular predictions. However, such explanations are often
unreliable and can be misleading. More fundamentally, they attempt to reverse-engineer
understanding from models that were not designed with the goal of being understood.

This opacity becomes particularly problematic in critical applications like autonomous
vehicles or medical diagnosis, where understanding the reasoning behind decisions is cru-
cial for safety and accountability. A self-driving car that makes the right decisions 99.9%
of the time may still be unacceptable if we cannot verify why it occasionally makes danger-
ous choices. Post-hoc explanations that merely highlight which visual features influenced
a decision provide limited assurance about the underlying logic.

An alternative approach, which has been a major focus of my research, is to develop
models that are interpretable by design. Rather than attempting to explain black-box mod-
els after the fact, we can create models whose decision-making process is transparent and
decomposable into understandable components. Even if the complete model is complex,
we can analyze its individual parts and their interactions to build confidence in its behavior.

Lipton (2018) offers the following components for defining interpretability:
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1. Simulatability: the decision process could be reproducible in a reasonable amount of time
by a user;

2. Decomposability: the decision process could be decomposed in several atomic operators
that are interpretable;

3. Transparency: the training process should feature convergence guarantees.

Among these, I find decomposability to be particularly crucial. Consider an operating
system - while its total complexity may exceed what any single person can fully compre-
hend in detail, its decomposable architecture allows us to understand and modify specific
components. The July 2024 CrowdStrike incident illustrates this principle: a faulty kernel
configuration file caused widespread system crashes, but because operating systems are
built from separable components, engineers could isolate the problem to specific driver
files and develop targeted fixes. Had the operating system been a monolithic black box,
diagnosing and repairing the issue would have been far more challenging.

In contrast, many modern AI systems lack this crucial property of decomposability.
Large Language Models (LLMs), for instance, distribute their knowledge across billions of
parameters in ways that resist clear decomposition. Consider updating the physical loca-
tion of something, like where the Eiffel Tower is. An ANN like an LLM can be trained
to include such information, storing it in parameters in the network. What if the location
changes, like the highly unlikely event that the Eiffel Tower is relocated to Rome? In Meng
et al. (2022), they make this precise manipulation, identifying the parameters that encode
the Eiffel Tower’s location and modifying them in order to change this specific fact. How-
ever, some of the other information stored in the LLM was modified as a result; information
that is related to neither the Eiffel Tower nor Rome (Meng et al. 2022). Furthermore, while
the location of the Eiffel Tower was modifiable though these methods, other information,
like what sport Michael Jordan plays, wasn’t. In large ANNs, information and decision
factors can be stored in a way that is too fundamentally entangled to be decomposed and
cleanly separated into interpretable components.

More classic information storage mechanisms like databases rather keep information in
ways that allow for individual modification. While the location of the Eiffel Tower may be
represented in multiple database entries, if all the database entries about the Eiffel Tower
are updated, a software system using the database will respond with the new location.
Furthermore, no other information will have been modified; only the Eiffel Tower’s loca-
tion. Complex software systems can have complex information dependencies, but they are
made of modular components (Parnas 1972). The information and decision factors can be
decomposed from the full model in order to modify them.

Through techniques in Genetic Programming (GP), my work focuses on developing
AI systems that are natively decomposable. By evolving programs as compositions of
well-understood functions, we ensure that if each component function is interpretable, the
complete model remains amenable to analysis. For instance, in robotic control tasks where
reinforcement learning typically employs neural networks, we have shown that graph-
based genetic programming can discover policies that are both effective and transparent.
These evolved programs reveal not just what information they use, but precisely how they
process it to make decisions.
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In this chapter, we explore two contributions to interpretable machine learning. First,
through a collaboration with Giorgia Nadizar, we demonstrate how genetic programming
naturally produces interpretable solutions, achieving comparable performance to deep rein-
forcement learning on continuous control tasks while remaining fully understandable.
Then, in the thesis of Camilo de la Torre, we show how these interpretable approaches can
be extended to handle complex visual inputs, providing transparent alternatives to deep
learning for real-world applications.

This investigation into interpretability mirrors key themes from our exploration of
quality-diversity algorithms in the previous chapter. Just as we found that focusing solely
on optimization can lead to suboptimal solutions, we will see that the assumed trade-off
between performance and interpretability is often false. By carefully designing our meth-
ods to be transparent while maintaining high performance, we can create models that are
both performant and understandable.

3.1 Native Interpretability

The need for interpretable AI has led to numerous methods for explaining the decisions
of black-box models (Landajuela et al. 2021). A common approach is to train a simpler,
interpretable model like a decision tree to mimic the behavior of a complex neural net-
work, a process known as policy distillation (Verma et al. 2018). While this can provide
insights into what patterns the neural network has learned, it adds an extra layer of approx-
imation and uncertainty - we cannot be sure if the explanatory model truly captures the
neural network’s decision process. Indeed, studies have shown that such imitation learning
approaches often yield less effective policies than direct optimization (Hein, Udluft, and
Runkler 2018), and can even fail entirely when the underlying behavior is too complex to
capture through imitation (Medvet and Nadizar 2023).

GP offers a compelling framework for evolving interpretable models directly (Zhou
and Hu 2023). By representing solutions as explicit computational graphs or programs,
GP methods naturally create models whose decision-making process can be analyzed and
understood. This approach dates back to the early work of Koza and Rice (1992), who
demonstrated how GP could be used to evolve interpretable robot control policies. While
these evolved programs may become complex, their step-by-step operation remains trace-
able, unlike the distributed representations learned by neural networks. In this section,
we examine how graph-based GP can produce effective solutions for challenging control
tasks while maintaining natural interpretability. We demonstrate that this interpretability
emerges without explicitly optimizing for it, suggesting that certain representations may
inherently lead to more understandable models.

3.1.1 Genetic Programming
GP is a type of Evolutionary Computation (EC) focused on the evolution of computer
programs (Koza 1994). Just as biological evolution optimizes organisms through selection
and variation, GP iteratively improves candidate programs by selecting the most successful
solutions and modifying them to create new variants. This process has proven remarkably
effective across diverse domains, from circuitry design to medical diagnosis (Julian Francis
Miller 2020; Cava et al. 2021).
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The challenge in evolving programs lies in representing them in a way that can be sys-
tematically modified while maintaining valid syntax. Traditional GP uses tree structures
to represent programs (Koza 1994), where each node in the tree represents a function and
its children represent the arguments to that function. While this approach is intuitive and
mirrors the structure of mathematical expressions, it can be limited in its ability to reuse
computed values and represent complex program flows.

Graph-based Genetic Programming (GGP) addresses these limitations by representing
programs as directed graphs rather than trees (Julian Francis Miller 2020). In this work,
we’ll see two prominent variants of GGP: Cartesian Genetic Programming (CGP) and
Linear Genetic Programming (LGP). CGP arranges nodes in a grid-like structure, with
each node representing a function that can take inputs from previous nodes or program
inputs (Julian F Miller 2011). The program’s outputs are then collected from specified
nodes in this grid. LGP, in contrast, represents programs as sequences of instructions that
operate on a set of registers (Brameier, Banzhaf, and Banzhaf 2007), though the flow of
information between instructions forms an implicit directed graph.

Both CGP and LGP encode programs as sequences of bounded integers that specify
function choices and connections. In CGP, each node is defined by a tuple (h, i1, . . . , im),
where h selects a function from a predefined set and ik specify the inputs to that func-
tion. LGP similarly encodes each instruction with a destination register, a function choice,
and source registers for the function’s arguments. This integer encoding enables efficient
mutation operators that can explore the space of possible programs while maintaining valid
syntax.

As we’ll explore in the next section, these graph-based representations naturally lead
to interpretable solutions, even without explicitly optimizing for simplicity. We will first
explore this property on robotic control tasks, showing how GGP can produce transparent
yet effective solutions.

3.1.2 Interpretable control
To demonstrate the natural interpretability of graph-based genetic programming, we con-
ducted a study comparing GGP-based controllers with state-of-the-art deep Reinforcement
Learning (RL) on continuous control tasks in Nadizar, Medvet, and Wilson (2024a). We
selected eight environments from the Brax physics simulation suite (Freeman et al. 2021),
ranging from simple balancing tasks like inverted pendulum to complex locomotion chal-
lenges like the walker and ant robots. These environments are standard benchmarks in RL,
allowing direct comparison with established methods. For these methods, we used two
leading algorithms: Proximal Policy Optimization (PPO) (Schulman et al. 2017) and Soft
Actor-Critic (SAC) (Haarnoja et al. 2018).

The results, presented in Figure 3.1, challenge the common assumption that interpretable
models must sacrifice performance. Graph-based policies achieved comparable or superior
performance to deep RL in most environments. In four out of eight tasks (inverted pen-
dulum, inverted double pendulum, swimmer, and hopper), GGP matched or exceeded the
performance of both deep RL algorithms. In three additional tasks (reacher, walker2d, and
half-cheetah), GGP remained competitive with at least one of the deep RL methods.

Only in the ant environment did GGP consistently underperform compared to deep
learning approaches. The ant robot has many sensors which provide input data and many
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Figure 3.1: Box plots of the cumulative reward RT (π⋆) found by the best policy π⋆ of each
method. Figure from Nadizar, Medvet, and Wilson (2024a).

joints to control, making the decision variables more complex. Later in this chapter, we’ll
look at an adaptation of CGP for complex data.

The swimmer environment provides a clear example of the interpretability of models
found by GGP. The task requires coordinating two joints to propel a snake-like robot
through water. While a deep neural network might use hundreds of parameters to solve
this task, the evolved programs uses just a handful of mathematical operations. A repre-
sentation of the swimmer environment, as well as the full solutions found by CGP and
LGP, is presented in Figure 3.2. The CGP solution computes the torque for each joint
using simple trigonometric and arithmetic operations on the robot’s state variables. Most
notably, each joint’s control takes into account the state of the opposite joint, revealing a
clear coordination strategy that emerges from the optimization process.

Analyzing the swimmer policy reveals not just what information is being used, but pre-
cisely how it is processed to generate actions. This level of transparency is impossible with
deep neural networks, where the relationship between inputs and outputs is distributed
across many layers of neurons. The graph structure makes it clear that the policy has
learned to coordinate the joints by creating a feedback loop between their states, a strategy
that is both effective and intuitive from a control theory perspective.

Interestingly, this interpretability emerges naturally from the graph-based representation,
without explicitly optimizing for it. Our analysis shows that successful policies consistently
use only a small fraction of the available computational nodes, typically less than one-third
of the maximum possible complexity. This tendency toward simplicity persists even as
performance improves during evolution, suggesting that the representation itself biases the
search toward interpretable solutions.

We verified this finding by comparing our single-objective optimization to a multi-
objective approach that explicitly rewarded simpler solutions. Using NSGA-II (Deb et
al. 2002) to simultaneously optimize for performance and simplicity, we found that the
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1 def controller(inputs, r):
2 # inputs to registers
3 r[0:10] = inputs
4 # perform computation
5 r[13] = r[1] - r[5]
6 r[16] = r[16] - r[7]
7 r[15] = r[13] - r[6]
8 r[15] = r[15] + r[2]
9 r[16] = r[16] - r[1]

10 # registers to output
11 return r[-2:]
12

t1 = θ1−ωf −ω1 + θ2

t2 =−ω2− θ1

(c) LGP solution.

Figure 3.2: (a) Schematic representation of the swimmer environment, showing the
observed variables θf , θ1, θ2,ωf ,ω1,ω2, vy and the control variables t1, t2. (b) The policies
found with CGP and (c) LGP, shown in their original form and as formulae. Figure from
Nadizar, Medvet, and Wilson (2024a).
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explicit promotion of interpretability was largely unnecessary. As we can see in Figure 3.3,
while the multi-objective optimization did find simpler solutions, it often failed to discover
the most effective policies. Single-objective GGP found solutions that were both simple
and effective without explicitly searching for simplicity. This suggests that for graph-based
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GP, interpretability is an inherent property of the representation rather than a competing
objective that must be explicitly optimized.

3.1.3 Diversity of solutions
In the previous chapter, we explored how quality-diversity optimization can discover
diverse solutions to complex problems. This approach becomes particularly useful when
combined with graph-based genetic programming, as it allows us to explore not just dif-
ferent behaviors but also different levels of interpretability. Rather than seeking a single
optimal solution, we can discover a range of interpretable policies that solve the task in
different ways. This diversity is valuable both for understanding the problem space and for
providing alternatives when certain solutions exhibit undesirable properties.

To achieve this, we extended our graph-based GP framework with MAP-Elites style
quality-diversity optimization (Nadizar, Medvet, and Wilson 2024b). The key innovation
was the introduction of a dual-archive system: one archive maintains diversity in the behav-
ioral space B (how the robot moves), while the other preserves diversity in the structural
space of the graphs themselves G (how the solution is composed).

This dual-archive approach allows for independent exploration of both the behavioral
and structural aspects of solutions. Solutions can be selected from either archive during
evolution, promoting diversity over both how the agent acts and how its controller policy
is structured.

The archives in Figure 3.4 reveal the relationship between solution structure, perfor-
mance, and interpretability. In the walker task, for example, we found that the most
effective gaits cluster around balanced leg usage in the behavioral space. Meanwhile,
the structural archive showed that simpler solutions (those using fewer operations) often
achieved better performance than more complex ones. This pattern, consistent across
different tasks, suggests that the search naturally gravitates toward simple yet effective
solutions when given the freedom to explore both behavioral and structural spaces.

Most notably, the archives demonstrate that similar behaviors can be achieved through
structurally different solutions, and conversely, similar graph structures can produce dif-
ferent behaviors. This diversity of graph structures leads to a wide array of interpretability
across behaviors. We find that there is no negative relationship between interpretability
and performance, as discussed in Rudin (2019). Rather, interpretable behaviors are found
throughout the two archives, and across the full range of policy performance.

These results reinforce a key theme of this section: interpretability need not be explicitly
optimized but can emerge naturally from appropriate representations and search meth-
ods. By combining graph-based GP with quality-diversity optimization, we can discover
not just individual interpretable solutions but entire families of them, each offering dif-
ferent trade-offs between complexity, performance, and robustness. In other words, if we
use these algorithms to solve a problem, the result will be a diverse set of different inter-
pretable solutions, each presenting a different insight that can help our understanding of
the problem.
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Figure 3.4: Archives from the robotic locomotion task walker2d. Behavior archives B orga-
nize policies based on their behavior. Graph archives G organize policies based on their
graph structure. The upper-right portion of the graph archive G is not reachable. The black
circles highlight the best performing policies, the red circles highlight the most inter-
pretable one. Figure adapted from Nadizar, Medvet, and Wilson (2024b).

3.2 Learning On Complex Data

The previous section demonstrated how graph-based genetic programming can create inter-
pretable solutions for continuous control tasks. However, many of today’s most challenging
problems require handling multiple types of high-dimensional data simultaneously. Med-
ical diagnosis combines image data with patient histories, autonomous vehicles fuse data
from cameras, LIDAR, and other sensors, and scientific modeling often requires integrat-
ing measurements across different modalities and scales. While deep learning has shown
impressive capability in processing such complex data, the resulting models remain opaque
black boxes.

Can we maintain interpretability when working with such rich, multi-modal data?
The key, I argue here, lies in decomposability - breaking down complex operations into
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well-understood building blocks. Just as an operating system manages diverse data types
through clearly defined interfaces and operations, we can design genetic programming
systems that handle complex data while keeping each operation transparent and analyzable.

Through careful design of high-level functions specialized for different data types, we
can evolve programs that process complex inputs while remaining interpretable. The func-
tions themselves may perform sophisticated operations, but their effects are well-defined
and their interactions can be traced. This allows us to maintain the benefits of interpretabil-
ity we saw with control tasks, even as we tackle problems involving images, text, and other
rich data types.

In this section, we will examine this approach through three complementary studies.
First, I introduce Multimodal Adaptive Graph Evolution (MAGE), a framework for evolv-
ing programs that handle multiple data types while maintaining interpretability through
type-aware operations. I will then show a demonstration of its effectiveness for biomedical
image analysis, where interpretability is crucial for clinical applications. Finally, we will
see how this approach enables transparent visual processing in Atari game-playing agents,
comparing program-level interpretations with traditional explainability methods.

3.2.1 MAGE
MAGE (De La Torre et al. 2024) extends CGP (Julian F Miller 2011) by organizing func-
tions into type-specific groups, allowing programs to process multiple data types while
maintaining the interpretability advantages of graph-based evolution. This concept builds
on previous work in applying CGP to multi-type data (Harding et al. 2012). Unlike stan-
dard CGP, where all functions exist in a single pool, MAGE separates functions by their
return type into distinct “chromosomes” - rows of nodes that can only contain functions
returning a specific type. As shown in Figure 3.5, this creates a layered structure where
each row specializes in processing one type of data.

Figure 3.5: Multimodal Adaptive Graph Evolution. Figure from De La Torre et al. (2024).

The goal of MAGE is to connect functions across different types of data. While nodes
within a chromosome all return the same type, they can take inputs from any other chro-
mosome, allowing complex data transformations to be built up from simpler, type-safe
operations. For example, a string-processing node might take input from both string and
integer nodes, combining them to produce a new string. These cross-type connections
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are explicitly tracked during evolution, ensuring that all operations remain type-safe and
interpretable.

This type-aware structure offers two key advantages. First, it constrains the search space
by only allowing connections that make sense from a typing perspective, making evo-
lution more efficient. Second, it maintains interpretability by organizing operations into
clear functional groups - we can easily trace how data flows between different types of
processing. When combined with carefully chosen high-level functions for each type,
this allows MAGE to tackle complex data processing tasks while keeping the resulting
programs analyzable and understandable.

3.2.2 Biomedical image analysis
Cortacero et al. (2023) demonstrated that CGP can create effective image segmentation
pipelines for biomedical applications. This work showed that evolved programs could
match the performance of deep learning approaches while remaining fully interpretable.
Notably, this was demonstrated on images used in cancer detection, highlighting the impor-
tance of understanding the full diagnosis pipeline, including AI image analysis tools. This
method of image segmentation operated primarily on a single data type - 2D matrices rep-
resenting image data or derived features. The success of interpretable segmentation raises
a question: can we achieve similar results for more complex tasks like classification that
traditionally require multiple types of processing?

Classification presents a challenge for interpretable models. While segmentation has a
clear decomposition into pixel-level operations, classification requires both feature extrac-
tion and decision-making components. This dual nature of classification helped drive the
success of Convolutional Neural Networks (CNNs), which seamlessly integrate feature
extraction and classification through learned convolutional filters and fully-connected lay-
ers (Krizhevsky, Sutskever, and Hinton 2012). Can a functional graph discover an effective
and understandable decomposition of these components?

Our recent work (De La Torre, Nadizar, Lavinas, Schwob, et al. 2025) suggests that for
biomedical images, which exhibit more constrained patterns than general natural images,
interpretable classification is achievable. We tested this approach on the PatchCamelyon
(PCAM) dataset (Veeling et al. 2018), which contains patches from lymph node biopsies
labeled as either malignant or benign. These patches present significant variability in tissue
appearance and staining, making classification challenging even for trained pathologists.

When compared to standard CNNs, our evolved classifiers achieved competitive per-
formance. While CNNs reached higher accuracy (84.5% versus 78% for MAGE), the
margin remained small enough to demonstrate the viability of interpretable classification.
More importantly, the evolved programs generalized well to unseen data, suggesting they
captured meaningful patterns rather than superficial correlations.

The true advantage of our approach lies in its interpretability. As shown in Figure 3.6, we
can trace exactly how the program processes an image to reach its classification decision.
For example, one successful program discovered that counting the number of unique pixel
values in the hue channel provides a strong signal for malignancy. This feature was not
hand-engineered but emerged through evolution, yet remains completely understandable.

The full decomposition of a model also reveals the limitations of the model. By ana-
lyzing the cases it classifies correctly and incorrectly, we can discern scenarios where the
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Figure 3.6: Example of a correctly classified image by an optimized classification program.
Original channels are shown at the top. The program produces two outputs, the first (79.)
is the support for the benign class and the second the support for the malignant class (90.).
The highest number is chosen as the predicted class, in this case, a correct prediction of
malignant tissue. Outputs are the results of a series of operations applied to inputs and
intermediary outputs. Figure from De La Torre, Nadizar, Lavinas, Schwob, et al. (2025).

model may be less effective. For instance, the model reasons largely on the whole patch
level. Because of this, if a clear malignant nucleus appears in an otherwise white patch, the
model will be overconfident about its benign prediction. Detection of such failure cases in
ANN has required the development of post-hoc analysis tools, which only provide a limited
view of the full range of possible failure cases (Zheng and Hong 2018; Singla et al. 2021).
With interpretable models, we can arrive at a full understanding simply by decomposing
and analyzing their internal structure.

3.2.3 Visual control
One of the early successes of deep RL was a demonstration that these algorithms could be
trained to compete with humans on Atari games (Mnih et al. 2015). The Arcade Learning
Environment became a standard benchmark in AI for simulating Atari games as a met-
ric of artificial intellience (Bellemare et al. 2013). In earlier work during my thesis, we
demonstrated that CGP could solve some of the Atari tasks, reaching levels above human
performance (Wilson et al. 2018). This work used Mixed-Type CGP (Harding et al. 2012),
an approach similar to MAGE but with less constrained interactions between functions.
The evolved programs could achieve performance competitive with deep reinforcement
learning methods, suggesting that interpretable approaches need not sacrifice effectiveness.
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Figure 3.7: The Atari game of Freeway. The goal is to cross the highway while avoiding
moving cars. Figure adapted from De La Torre, Nadizar, Lavinas, Luga, et al. (2025)

An unexpected finding emerged from this work: many of the evolved policies achieved
strong performance without processing the visual input at all. Instead, they discovered
simple, fixed output patterns that exploited regularities in the games. Some of these min-
imal strategies even outperformed both human players and deep learning approaches.
While these solutions might seem trivial, their discovery was only possible because the
interpretable nature of the programs allowed us to understand exactly how they worked.

However, our goal extends beyond finding clever shortcuts - we want to understand
how programs can process complex information to make decisions. We therefore applied
MAGE to the Atari benchmark. By constraining function interactions to be type-safe,
MAGE encourages the evolution of programs that actually process the visual input rather
than ignoring it. Our preliminary work on three games - Pong, Freeway, and Bowling -
shows that this approach can create effective visual control policies (De La Torre, Nadizar,
Lavinas, Luga, et al. 2025). In the next section, I will focus on the evolved policy on the
Freeway game to illustrate the advantage of interpretability.

3.2.4 Beyond explanations
Understanding how a program processes visual information to make decisions is inherently
difficult. Each frame contains multiple objects and features that could influence the choice
of action. How can we determine which elements matter and how they factor into the
decision?

Current approaches to this problem rely heavily on statistical analysis. Methods like
RISE and occlusion sensitivity aim to identify which parts of the input most strongly influ-
ence the output (Petsiuk, Das, and Saenko 2018; Zeiler and Fergus 2014). These techniques
have become standard tools for understanding deep learning models in applications from
autonomous vehicles to satellite image analysis. When applied to our Atari agents, they
highlight regions of the screen that appear important for decision-making.

Consider the game of Freeway, shown in Figure 3.7. Freeway is a simple game where
you control a chicken trying to cross a busy highway without getting hit by cars. The agent
can only move up or down, and each successful crossing earns a point. The goal is to cross
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Figure 3.8: Saliency produced by RISE (top) and occlusion sensitivity (bottom) produced
by perturbations over the fourth frame for (a), third frame for (b) and fourth frame for (c).
Figure adapted from De La Torre, Nadizar, Lavinas, Luga, et al. (2025).

as many times as possible before time runs out while avoiding traffic. As such, Freeway
has a variety of visual information that might influence the policy.

Explanation methods like RISE and occlusion sensitivity should help identify which
visual features are used by a given Freeway policy. As shown in Figure 3.8, both methods
highlight a car at the top of the screen, indicating its importance. While we can determine
that this car influences the policy, it is not clear how Furthermore, it is unclear if other
visual features, which are given less but non-zero importance in the saliency maps, count
in the decision process. If we watch the video of these saliency maps, we might arrive at
an explanation of how the policy functions in general. However, this won’t be a complete
picture and will include assumptions on our part. Explanations like these are strongly influ-
enced by our biases and rarely offer rigorous insights, limiting their utility for validation
(Atrey, Clary, and Jensen 2020).

In contrast, examining the evolved program reveals the complete decision process. The
full code is presented in Figure 3.9. It is long and uses many functions to arrive at its
decision, which is to be expected. It makes decisions per frame based on multiple sources
of information, pulled from a screen through visual analysis functions. But it is decom-
posable. We can analyze it, line by line, and understand the complete logic of how it
works.

From this analysis, we learn that the agent indeed tracks the top car, but its behavior is
more nuanced than the explanations suggest. It moves upward when the top car is far from
the left corner, but it also monitors a car in the middle lane. This middle lane car barely
appears in the saliency maps, and isn’t significant enough to differentiate it from other cars.
However, we can clearly see its use in the policy program. The program calculates distances
between these cars, the screen center, and the player’s position to determine when to pause
movement. This full picture of the decision pipeline - including the role of the middle car
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1 ACTIONS = [0,1,2]
2 function evolved_freeway_policy(frame1, frame2, frame3, frame4)
3 # output NO OP
4 car_in_the_middle = sobel(frame2, border = 50.)
5 x_y_car = argmax_position(car_in_the_middle) # the car in the middle is usually

highlighted because of the road lines
6 blurry_frame3 = dilation(frame3, k = vertical_argmax(frame1))
7 blurry_frame3 = gaussian_blur(blurry_frame3)
8 x_y_center = center_of_mass(blurry_frame3) # ~ midpoint of the screen
9 dir_car_to_center = direction_from_to(x_y_car, x_y_center)

10 extract_chicken = tophat(frame3, k = 100)
11 x_y_chicken = argmax_position(extract_chicken)
12 d_chicken_to_dir_car_to_center = direction_from_to(x_y_chicken, dir_car_to_center)
13 x_y_chicken_second_frame = argmax_position(frame2)
14 x_y_chicken_first_frame = argmax_position(frame1)
15 d = direction_from_to(x_y_chicken_second_frame, x_y_chicken_first_frame) # has the

chicken move up/down or not moved
16 output1 = true_gt_or_eq(d, d_chicken_to_dir_car_to_center) # checks if the middle car

has crossed the x coordinate of the chicken
17

18 # Output UP
19 from = exp(vertical_relative_argmax(sobely(sobelx(frame4))))
20 k = vertical_argmax(frame4)
21 dilated_once = dilation(frame3, k)
22 dilated_twice = dilation(dilated_once, k)
23 edges = sobely(dilated_twice)
24 upper_edges = notmaskfromto_vertical(edges, from, 10) # gets the top part of the screen

who can have some pixels if the top car is there
25 y_pos_edge = vertical_argmax(upper_edges)
26 output_2 = y_pos_edge * 0.5 # if the top car "disappears" from the top, this value will

be low, high otherwise (unless the chicken is also there).
27

28 # Output DOWN
29 edges = sobelm(frame2, 50)
30 opened = opening(edges, 50)
31 edges_2 = sobelm(opened, 40)
32 output3 = horizontal_relative_argmax(edges_2) # usually a very low value
33

34 outputs = (output1, output_2, output_3)
35 return ACTIONS[argmax(outputs)]
36 end

Figure 3.9: Code for the Freeway player, from De La Torre, Nadizar, Lavinas, Luga, et
al. (2025).

that wasn’t clearly highlighted by statistical explanations - emerges only through direct
interpretation of the program.

3.3 Perspectives

The work presented in this chapter demonstrates that interpretable methods can achieve
performance competitive with black-box approaches while maintaining transparency in
their decision-making processes. Through graph-based genetic programming, we showed
that models can be both effective and understandable, challenging the common assumption
that interpretability must come at the cost of performance. Furthermore, our extensions to
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handle complex data types suggest that interpretability can be maintained even as we tackle
increasingly sophisticated problems.

Next, we’ll discuss how interpretable AI can aid in scientific discovery. Before that, I
would like to highlight some challenges and opportunities for interpretable AI.

3.3.1 Measuring interpretability
One of the central challenges in developing interpretable AI systems is the inherently sub-
jective nature of interpretability itself. While we can intuitively recognize when a solution
is more or less interpretable, developing metrics to quantify this property remains an open
challenge. Recent work by Virgolin et al. (2020) demonstrates a possible approach, using
human feedback to develop quantitative measures of interpretability for mathematical for-
mulas. This is the metric that we deployed in Figure 3.4 to measure interpretability, for
example.

This data-driven approach to measuring interpretability suggests a broader methodol-
ogy that could be applied across different types of models. By gathering human feedback
on specific aspects of interpretability, such as simulatability and decomposability, we can
develop metrics that align with human understanding. These metrics could then be incor-
porated into optimization objectives, guiding the search toward solutions that are not just
mathematically sound but also naturally interpretable to human users.

However, as with all data-driven approaches, a consideration must be taken here for
which data to use. Interpretability must be measured relative to the intended user of the
system. A model that is interpretable to a domain expert may be opaque to a policymaker,
and vice versa. Future work should focus on developing adaptive measures of interpretabil-
ity that can be tailored to specific user groups and application contexts. Data-driven metrics
of interpretability must adapt to the intended stakeholders of an AI model.

An alternative to quantifying interpretability would be to directly involve humans in the
optimization process (Liu et al. 2019). Evolutionary algorithms are particularly well-suited
for this type of interaction due to their population-based nature and iterative improvement
process (Ortega et al. 2013). At each generation, human experts could review candidate
solutions, providing feedback that helps guide the search toward more interpretable results.

This approach has several advantages over purely automated optimization. First, it
allows for real-time adjustment of the search based on domain expertise and contextual
understanding that might be difficult to encode in an objective function. Second, it creates
an interactive learning process where the system can adapt to user preferences and require-
ments as they evolve during the search. Finally, it builds trust in the optimization process
by making it more transparent and collaborative.

3.3.2 Solution representations
The methods presented in this chapter have relied primarily on graph-based representa-
tions, which provide a clear visual structure for understanding program flow. However,
recent advances in LLMs present an opportunity to work directly with code as the solution
representation. This shift towards code-based representations holds particular promise for
interpretability, as computer code is already designed for human understanding.

Language Model Genetic Programming (LMGP) combines the strengths of genetic pro-
gramming with the capabilities of LLMs to optimize code directly (Hemberg, Moskal, and
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Figure 3.10: The LMGP framework. First, programs represented as computer code are
either written by experts or generated, and then organized in an archive. Programs are
selected from the archive and combined with a fixed context to form a prompt. This prompt
is given to a pretrained language model, which generates new programs. The new candidate
programs are evaluated and potentially placed into the archive. This process continues until
a high-quality program is found.

O’Reilly 2024). Rather than evolving abstract syntax trees or computational graphs, LMGP
maintains a population of actual program code, using LLMs to generate and modify solu-
tions. This approach leverages the semantic understanding of code embedded in LLMs,
which have been trained on vast repositories of human-written programs.

Recent applications demonstrate the potential of this approach. FunSearch (Romera-
Paredes et al. 2024) uses LMGP to discover novel algorithms, maintaining an archive of
generated programs and employing a LLM to create new candidate solutions. The sys-
tem has successfully generated solutions to complex problems like bin-packing, producing
code that is both effective and readable. Similar successes have been shown in optimizing
neural network architectures (Chen, Dohan, and So 2024), creating search algorithms (Ma
et al. 2024), and designing computer game levels (Sudhakaran et al. 2024).

The key advantage of LMGP for interpretability lies in its use of natural program-
ming languages. While graph-based representations must be translated into a form that
humans can understand, code is already expressed in a language designed for human
comprehension. Furthermore, LLMs can leverage natural language descriptions and docu-
mentation, allowing the evolution process to be guided by human-provided specifications
and constraints. This creates a more natural interface between human intent and program
synthesis.

The combination of code and natural language also enables new forms of interpretability.
For instance, LLMs can generate explanations of how code works, produce documentation,
or refactor code into more readable forms. This capability creates a bridge between the
program’s functional representation and its human-understandable description. As noted
in our work on shoreline forecasting (Al Najar et al. 2023), the ability to explain and
document models is crucial for their adoption in scientific applications.

Looking forward, LMGP represents a promising direction for developing interpretable
AI systems. The ability to work directly with text and code, combined with the semantic
understanding provided by LLMs, could enable the evolution of programs that are not only
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functionally correct but also naturally comprehensible to human users. This aligns with our
broader goal of creating AI systems that serve as tools for human understanding.





4 Discovery

Before the invention of the microscope, an entire world remained hidden from human
observation. Without the ability to see microorganisms, scientific understanding was con-
strained by the limits of human perception. The development of the microscope didn’t
just provide new data - it fundamentally transformed how scientists could interact with
and understand the natural world. This revolutionary tool enabled the discovery of cells,
bacteria, and countless other microscopic phenomena that reshaped our understanding of
biology, medicine, and life itself (Harari 2014).

Today, machine learning offers a similar promise. Rather than uncovering previously
invisible data, these computational tools help us make sense of data that overwhelms
human analytical capabilities (Wang et al. 2023). Consider protein folding - while we have
long had the amino acid sequences of proteins, understanding how these sequences trans-
late into three-dimensional structures remained a grand challenge in biology. AlphaFold
demonstrated how machine learning could transform this data into profound scientific
insights, predicting protein structures with unprecedented accuracy and advancing our
understanding of fundamental biological processes (Jumper et al. 2021).

This chapter examines how machine learning can serve as a tool for scientific dis-
covery, particularly in environmental science. Drawing from the methods developed in
previous chapters, we explore two case studies where computational techniques reveal
new insights in complex natural systems. The first, drawn from the thesis of Mahmoud
Al Najar, focuses on shoreline evolution, where we use genetic programming to discover
interpretable models that capture the interplay between waves, sea levels, and coastal
dynamics. The second, from a recent collaboration with the Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), examines prediction of El Niño-Southern Oscilla-
tion (ENSO), demonstrating how machine learning can improve our understanding of this
crucial climate phenomenon.

Our approach builds directly on the themes developed earlier in this manuscript. The
exploration techniques from Chapter 2 help us systematically search through vast spaces
of possible scientific models. The interpretability methods from Chapter 3 ensure that our
discoveries can be understood and validated by domain experts. Together, these capabil-
ities enable a new approach to scientific discovery - one that combines the creativity of
exploration with the rigorous demands of scientific understanding. At the end of this chap-
ter, I offer a reflection on the broader implications of these approaches for automating
scientific discovery. I argue that machine learning can augment rather than replace human



50 Chapter 4

scientific reasoning, providing tools that expand our capacity for understanding complex
natural phenomena.

4.1 Discovering Shoreline Models

Coastal zones face mounting pressures from climate change, urbanization, and human
activity (H. Lee et al. 2023). Understanding how shorelines evolve is crucial for coastal
management, infrastructure planning, and natural hazard assessment. Rising sea levels
and increasing storm intensity make this understanding even more critical, as coastal
communities must adapt to changing conditions (Reimann, Vafeidis, and Honsel 2023).

Shoreline prediction aims to forecast how the boundary between land and sea will
change over time. This apparently simple interface represents the complex interplay of
waves, tides, sediment transport, and other physical processes. While shoreline modeling
focuses on understanding these underlying mechanisms, shoreline prediction addresses the
practical challenge of forecasting future coastal states. These predictions operate across
multiple time horizons - from days for storm response to years for coastal planning
(Splinter et al. 2014).

Traditional approaches rely on physics-based models that simulate the fundamental pro-
cesses driving coastal evolution. These models incorporate wave mechanics, sediment
transport equations, and conservation laws to represent how beaches respond to chang-
ing conditions. The ShoreFor model exemplifies this approach, using concepts like wave
energy flux and equilibrium beach states to predict shoreline change (Davidson, Splinter,
and Turner 2013; Splinter et al. 2014). However, these physics-based models only make
partial use of observational data, often by tuning model parameters with linear regression.

Recent work, particularly through the Shoreshop competition, has demonstrated the
potential of machine learning for shoreline prediction (Montaño et al. 2020). Neural
networks and random forests achieved high accuracy in this competition, especially for
high-frequency shoreline changes. These results suggest that data-driven approaches can
capture coastal dynamics that elude physical models (Beuzen and Splinter 2020). How-
ever, like many machine learning applications, these successful models operate as black
boxes - they can predict effectively but offer limited insight into the physical processes
they represent.

This raises a fundamental question for scientific discovery: can we develop models that
match the predictive capacity of neural networks while maintaining the interpretability
of physics-based approaches? Our work with genetic programming suggests a path for-
ward, using evolutionary algorithms to discover mathematical models that both predict and
explain shoreline evolution. These models emerge from data but take forms that coastal
scientists can analyze and understand, potentially revealing new insights about coastal
processes.

4.1.1 Local shoreline models
Our investigation centered on five diverse coastal sites, shown in 4.1: Grand Popo beach in
Benin, Truc Vert beach in France, Narrabeen beach in Australia, and two sites in the United
States - Duck, North Carolina and Torrey Pines, California. These locations represent
different coastal environments, wave climates, and shoreline behaviors. Data collection
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combined traditional and modern approaches, from GPS surveys to video monitoring sys-
tems, creating five varied datasets of shoreline positions over time (Almar et al. 2012;
Bonou et al. 2018; Splinter et al. 2014). While physical models of shoreline evolution
are largely based on wave physics, we also included data on sea level anomaly and river
discharge to discovery relationships between these data and shoreline change.
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Figure 4.1: World map highlighting the locations of the five sites included in the multi-site
study. Figure from Al najar (2023).

We applied Cartesian Genetic Programming (CGP), discussed in Chapter 3, to discover
mathematical models that could predict shoreline evolution at these sites. Our function set
incorporated operations from the ShoreFor model (Splinter et al. 2014), allowing evolution
to build upon established physical principles. The evolutionary process optimized models
for each site individually. Following evolution, we also analyzed the full archive from
evolution to select models that generalize across all locations.

The evolved models demonstrated improved predictive capability over physical models,
as shown in Figure 4.2. At most sites, they matched or exceeded the performance of the
baseline ShoreFor model across different timescales. Significant improvements appeared in
capturing short-term shoreline changes, where traditional physical models often struggle.
The models showed different strengths at different locations - some excelled at predicting
seasonal patterns, while others better captured long-term trends.

Evolution discovered several noteworthy models, including two "generalist" formula-
tions that performed well across multiple sites. These models represent different hypothe-
ses about how various physical processes combine to drive shoreline change. The first
generalist model introduces a conditional response based on the relationship between sea
level (S), wave power (P), and dimensionless fall velocity (Ω):

dx
dt

=

 1
2 P̄0.5 d

dt

√
ϕ2

2 + 1
4 (R−Ω)2 + S2, if S≥P0.5 +Ω

0, otherwise.
(4.2)



52 Chapter 4

Figure 4.2: Forecast performances on the five sites (left) and the difference in the Mielke
skill score at different timescales compared to the performance of ShoreFor at that
timescale (Y = 0 represents ShoreFor and the X axis corresponds to the number of months
at the evaluated timescale). Figure from Al najar (2023).

The second model suggests a simpler relationship where river discharge (R) modulates
the influence of wave power, while sea level acts through an exponential term:

dx
dt

= P
R
2

d
dt

10S. (4.3)

These models differ significantly from traditional formulations like ShoreFor. Where
ShoreFor emphasizes the concept of equilibrium beach states, our evolved models suggest
alternative mechanisms. They incorporate factors not typically included in shoreline mod-
els, such as river discharge and sea level anomalies. This integration of multiple drivers
aligns with growing evidence that shoreline evolution responds to a broader range of
environmental forces than previously considered.
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The mathematical structure of these models offers insights into coastal processes. The
first generalist model suggests a threshold behavior - shoreline change occurs only when
sea level exceeds a wave-dependent threshold. The second model proposes a more continu-
ous response, where river discharge modulates the system’s sensitivity to wave power. Both
models point to the importance of interactions between different environmental factors,
rather than treating them as independent influences.

Cross-validation between sites helped ensure the models captured genuine physical
relationships rather than site-specific correlations. However, performance varied signifi-
cantly between locations, suggesting that local factors still play a crucial role in shoreline
evolution. The models performed particularly well at sites with strong seasonal patterns,
indicating they effectively capture cyclic coastal behavior.

4.1.2 Global shoreline models
Our investigation expanded from local to global scale, analyzing satellite-derived shore-
line positions across thousands of coastal locations worldwide. Each point in our dataset
represents a unique waterline, tracked through 30 years of satellite observations (Almar
et al. 2023). This global perspective required different approaches than our local studies
- while we maintained the goal of interpretable modeling, we needed methods that could
handle both the increased scale and diversity of coastal behaviors.

The genetic programming setup reflected these new challenges. Rather than optimiz-
ing models for specific locations, we evolved models using a subset of global points.
This approach forced evolution to discover more general relationships between environ-
mental drivers and shoreline change. Post-evolution evaluation then tested these models’
performance across all available coastal points, assessing their true global applicability.

Figure 4.3: Global map of the correlation scores achieved by the baseline global model (r̄ =
0.36). *The color-scale corresponds to Pearson correlation. Figure from Al Najar, Almar,
and Wilson (2025).

Our baseline global model achieved a mean correlation of r̄ = 0.36 in hindcasting shore-
line change, as shown in Figure 4.3. This performance, while modest, demonstrates that
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even a single interpretable model can capture some universal patterns in coastal evolution.
The spatial distribution of model performance reveals where simple physical relation-
ships hold and where more complex dynamics may be at play. Areas with strong seasonal
patterns or dominated by a single physical process showed the strongest correlations.

Figure 4.4: Global map of the ensemble-based shoreline hindcast correlations (r̄ = 0.61).
*The color-scale corresponds to Pearson correlation. Figure from Al Najar, Almar, and
Wilson (2025).

We then developed an ensemble approach, combining multiple evolved models to cap-
ture different coastal behaviors. The ensemble achieved a global correlation of r̄ = 0.61, a
substantial improvement over the baseline model. As shown in Figure 4.4, this improve-
ment wasn’t uniform - some regions saw dramatic gains while others showed more modest
benefits. The varying performance helps identify where different physical processes
dominate shoreline evolution.

Figure 4.5: Global map of the drivers of the ensemble of 57 models, showing three example
models. Figure from Al Najar, Almar, and Wilson (2025).
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The global distribution of dominant shoreline drivers, presented in Figure 4.5, reveals
regional patterns. Different models, each representing distinct physical hypotheses, domi-
nate in different coastal regions. This pattern suggests that while some physical principles
apply globally, local conditions often determine which processes most strongly influence
shoreline evolution. The local models can thereby provide a new classification of coastal
systems based on their governing dynamics.

The evolved equations show varying levels of complexity, from simple wave-driven
models to more intricate formulations incorporating multiple environmental factors. Some
coastal regions show clear dominance of a single driver - wave power in high-energy coasts,
for example. Other areas exhibit more complex behaviors, where multiple drivers interact
to determine shoreline position. This diversity of governing equations challenges the notion
of a single, universal model for shoreline evolution.

This global analysis reveals patterns that would be difficult to discern from local studies
alone. The spatial distribution of model performance and dominant drivers provides new
insights into coastal classification. Regions with similar governing equations might sug-
gest shared underlying physics, even in geographically distant locations. These patterns
could help guide coastal management strategies and improve our understanding of how
shorelines might respond to climate change.

4.1.3 Perspectives
The field of satellite-derived shoreline analysis remains young, with continuous improve-
ments in data quality and processing methods (Almar et al. 2023). Our current work uses a
new global dataset where quality assurance is still ongoing. This presents both challenges
and opportunities - while we must be cautious about data reliability, the expanding avail-
ability of satellite observations promises increasingly robust analyses (Ibaceta et al. 2022).
The distinction between modeling and prediction also merits attention. Where many stud-
ies focus on modeling shoreline states based on the corresponding drivers, we attempt the
more challenging task of prediction, using historical drivers to forecast future shoreline
positions.

A key limitation of current shoreline modeling approaches, including our own, is their
strictly local nature. Each point along the coast is treated independently, even though
coastal processes often operate at regional scales. This local focus means we poten-
tially miss important information about sediment transport between neighboring beaches,
regional wave patterns, and other spatially-connected processes (Almar et al. 2023). To
examine the possibility of global influence, we performed a preliminary study with convo-
lutional neural networks trained on the same global dataset discussed in this chapter (Riu et
al. 2023). This study suggested promising directions for incorporating spatial relationships,
although it was limited by the black-box nature of the model used.

An internship planned for 2025 will explore combining Language Model Genetic Pro-
gramming (LMGP) with regional physical models. This work aims to bridge the gap
between local and regional scales, potentially discovering models that can capture both
spatial and temporal dynamics. The use of LMGP could help discover equations that better
respect known physical principles while maintaining the flexibility to learn from data.

While our current models are interpretable in mathematical terms, they sometimes lack
physical consistency. The evolved equations can produce accurate predictions but may
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do so through mechanisms that don’t align with physical understanding. Future work
should focus on increasing the physical validity of these models. Several approaches could
help: enforcing dimensional consistency in the evolved equations, adding physics-informed
constraints during evolution, or incorporating principles from Physics-Informed Neural
Networks (PINNs) (Cai et al. 2021; Cuomo et al. 2022).

Progress in this direction could yield models that not only predict coastal evolution but
also advance our understanding of coastal processes. By incorporating spatial relation-
ships and physical constraints, we might discover new patterns in how shorelines respond
to environmental forcing. Such discoveries could prove particularly valuable as coastal
communities face the challenges of climate change.

4.2 Discovering El-Niño Models

ENSO represents one of Earth’s most influential climate patterns. Like a planetary heart-
beat, it drives global weather variations through complex interactions between the ocean
and atmosphere. When this pattern shifts toward El Niño conditions, the central and eastern
Pacific warms abnormally, weakening trade winds and altering weather patterns world-
wide. During La Niña, the opposite occurs - cooler waters in the eastern Pacific strengthen
trade winds, creating distinct but equally far-reaching effects (Timmermann et al. 2018).

Despite its profound importance for agriculture, public health, and economic planning,
accurate ENSO prediction remains challenging. Traditional approaches fall into two cate-
gories: dynamical models that simulate physical processes and statistical models that learn
from historical patterns. Both face significant limitations. Physical models struggle to cap-
ture the full complexity of tropical climate patterns, while statistical approaches can miss
crucial mechanisms that drive ENSO evolution (Ibebuchi and Richman 2024).

Most current prediction systems rely on ensemble forecasting, where multiple sim-
ulations run in parallel to account for uncertainties. The JAMSTEC Scale Interaction
Experiment-Frontier (SINTEX-F) model exemplifies this approach, maintaining an ensem-
ble of over 100 members to predict ENSO evolution (Doi, Behera, and Yamagata 2016,
2019). However, even with substantial computational resources, questions remain about
how best to combine these ensemble predictions. The standard practice of simple averaging
across ensemble members may not capture the full predictive power of these sophisticated
models.

This section examines how machine learning can improve ENSO prediction by discov-
ering more effective ways to combine ensemble forecasts. Working with JAMSTEC, we
explored alternatives to simple ensemble averaging using LMGP. This approach allows
us to evolve interpretable mathematical expressions for combining ensemble members,
potentially revealing new insights about which model configurations and parameters mat-
ter most for accurate prediction. The work demonstrates how automated discovery methods
can enhance our understanding and prediction of critical climate phenomena.

4.2.1 SINTEX-F model
The SINTEX-F model represents one of several major climate prediction systems used for
seasonal forecasting. At its core, SINTEX-F employs 12 different model configurations
that vary in their initialization data and physical parameterizations. These configurations



Discovery 57

differ in three key aspects: the choice of observational sea surface temperature datasets
used for initialization, the strength of temperature feedback in the initialization phase, and
the parameterization of ocean vertical mixing.

To increase the robustness of predictions, this base ensemble of 12 configurations was
expanded using lagged average forecasting. This method creates additional ensemble mem-
bers by initializing the same model configurations on different nearby start dates. For each
of the 12 base configurations, forecasts were initialized on eight consecutive days (June
1-8), resulting in a total of 108 ensemble members (Doi, Behera, and Yamagata 2019).
While other methods exist for generating ensemble members, the lagged average approach
has the advantage of preserving the underlying physical dynamics of the system.

Our study focuses specifically on the SINTEX-F ensemble’s prediction of the Niño
3.4 index (Trenberth and Stepaniak 2001). This index, measuring sea surface temperature
anomalies in the central equatorial Pacific (5°N-5°S, 170°W-120°W), serves as the primary
metric for monitoring ENSO conditions. The choice of this region reflects its importance in
ocean-atmosphere coupling - it captures the average equatorial temperatures from roughly
the dateline to the South American coast. When these temperatures deviate significantly
from normal conditions, they signal the development of El Niño or La Niña events.

The ensemble generates monthly forecasts of the Niño 3.4 index, with each member
producing its own prediction trajectory. Currently, these 108 individual predictions are
combined through simple averaging to create the final forecast. However, this straight-
forward approach may not optimally capture the information contained in the ensemble.
Some members or combinations of members might provide more reliable predictions under
certain conditions. Our work explores whether machine learning can discover more effec-
tive ways to combine these predictions, potentially revealing patterns in which ensemble
members contribute most to accurate forecasts.

For this preliminary study, we focus solely on improving the ensemble prediction of
the Niño 3.4 index rather than examining the full SINTEX-F forecast system. This sim-
plified scope allows us to directly assess whether evolutionary computation can enhance
the combination of ensemble predictions for this crucial climate indicator. The methods
developed here could potentially be extended to other aspects of the SINTEX-F system in
future work.

4.2.2 Code optimization
Building on the LMGP framework introduced in Chapter 3, we explored ways to improve
the SINTEX-F ensemble predictions. Rather than simply averaging ensemble members,
we sought to discover more sophisticated combination strategies that could better capture
the system’s predictive power. The search began with hand-written candidate solutions
that implemented various aggregation methods, from weighted averages to conditional
combinations based on model configurations.

The optimization process balanced three objectives: Root Mean Square Error (RMSE),
correlation, and novelty. For overall prediction accuracy, we used the standard RMSE
between predicted and observed Niño 3.4 values. We also incorporated correlation as a
second objective to ensure the ensemble captured the temporal patterns of the Niño 3.4
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index variations. These two metrics complement each other, as RMSE focuses on abso-
lute accuracy while correlation addresses the synchronization of patterns regardless of
magnitude.

Finally, to encourage exploration, we include novelty as a third objective, calculated
as in Novelty Search (Lehman and Stanley 2011a). As in the Curiosity-ES method dis-
cussed in Chapter 2, this additional fitness balances the exploration drive with the two
data-based objectives. The optimization was handled through NSGA-II (Deb et al. 2002),
a multi-objective evolutionary algorithm that maintains a Pareto front of solutions trad-
ing off these objectives. NSGA-II has previously been used with novelty as an objective
(Paolo et al. 2021) as a means of combining quality and diversity. This approach helps
avoid premature convergence to a single solution type by rewarding novel approaches to
the ensemble problem. Code solutions were generated using Language Model Crossover
(Meyerson et al. 2024). To rigorously evaluate our solutions, we split the data into five
folds, using the final fold (covering data from 2015 to 2022) for out-of-sample testing.
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Figure 4.6: Evolved models organized by their correlation and RMSE scores relative to
Niño 3.4 data, with different colors indicating program complexity.

The resulting Pareto front, shown in Figure 4.6, reveals interesting trade-offs between
our objectives. Each point represents a different combination strategy, positioned according
to its RMSE and correlation with observed data. The color of each point indicates program
complexity, providing an additional dimension of information. This visualization demon-
strates how different regions of the solution space offer a variety of models, which can be
evaluated by experts for final selection.

From this Pareto front, we selected Solution 120 as a particularly promising candidate.
This solution, shown in Figure 4.8, implements a sophisticated strategy for combin-
ing ensemble predictions. The solution applies a multi-stage weighting approach: first
weighting ensemble members according to their metadata characteristics (SST observation
dataset, SST-nudging feedback, and SVS mixing), then applying time-dependent blending
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1 def ensemble_forecast(forecast_metadata):
2 ’’’
3 Generate a forecast by combining the SINTEX ensemble predictions.
4

5 Args:
6 forecast_metadata: DataFrame containing forecast data and metadata
7 - Metadata columns include: ’SST observation’, ’SST-nudging feedback’,
8 ’SVS mixing’, and ’forecast start’
9 - Remaining columns are the forecasts for each timestamp

10

11 Returns:
12 numpy.ndarray: Predicted Nino 3.4 index values across all timestamps
13 ’’’
14 # Find where the forecast data begins (after metadata columns)
15 metadata_cols = [’SST observation’, ’SST-nudging feedback’, ’SVS mixing’, ’forecast

start’]
16 forecast_cols = [col for col in forecast_metadata.columns if col not in metadata_cols]
17

18 # Strategy: Weighted averaging and time-dependent blending based on metadata,
incorporating

19 # SST observation, SST-nudging feedback, forecast start date, and SVS mixing.
20 # Also, incorporates dynamic weighting for extreme events.
21

22 # 1. Weighting based on SST observation dataset
23 sst_weights = {
24 ’OISSTv2weekly’: 0.4,
25 ’OISSTv2daily’: 0.5, # Favor OISSTv2daily slightly
26 ’ERSSTv5’: 0.3
27 }
28

29 # 2. Weighting based on SST-nudging feedback
30 nudging_weights = {
31 -1200: 1.1, # Favor -1200
32 -2400: 0.9, # Slightly penalize extreme nudging
33 -800: 1.0
34 }
35

36 # 3. Prepare ensemble members based on forecast start date
37 may1_members = forecast_metadata[forecast_metadata[’forecast start’] == ’May1’][

forecast_cols]
38 jun1_members = forecast_metadata[forecast_metadata[’forecast start’] == ’Jun1’][

forecast_cols]
39

40 # Handle missing start dates gracefully
41 if len(may1_members) == 0 and len(jun1_members) == 0:
42 return forecast_metadata[forecast_cols].mean(axis=0).values
43 if len(may1_members) == 0:
44 return jun1_members.mean(axis=0).values
45 if len(jun1_members) == 0:
46 return may1_members.mean(axis=0).values
47

48 may1_forecasts = may1_members.values
49 jun1_forecasts = jun1_members.values
50

51 n_timesteps = len(forecast_cols)
52 result = np.zeros(n_timesteps)
53

54 # Apply weights to ensemble members before time-dependent blending
55 may1_weighted_forecasts = np.zeros((may1_forecasts.shape[0], may1_forecasts.shape[1]))
56 jun1_weighted_forecasts = np.zeros((jun1_forecasts.shape[0], jun1_forecasts.shape[1]))

Figure 4.7: First half of the code of the selected solution, number 120
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1 for i in range(may1_forecasts.shape[0]):
2 # SST observation weight
3 obs_type = forecast_metadata[’SST observation’].iloc[forecast_metadata.index[

may1_members.index[i]]]
4 sst_weight = sst_weights.get(obs_type, 0.2) # Default weight if not found
5

6 # Nudging feedback weight
7 nudging_feedback = forecast_metadata[’SST-nudging feedback’].iloc[forecast_metadata.

index[may1_members.index[i]]]
8 nudging_weight = nudging_weights.get(nudging_feedback, 1.0) # Default weight
9

10 # SVS mixing weight (if enabled, slightly boost)
11 svs_mixing = forecast_metadata[’SVS mixing’].iloc[forecast_metadata.index[

may1_members.index[i]]]
12 svs_weight = 1.1 if svs_mixing else 1.0
13

14 may1_weighted_forecasts[i, :] = may1_forecasts[i, :] * sst_weight * nudging_weight *
svs_weight

15

16 for i in range(jun1_forecasts.shape[0]):
17 # SST observation weight
18 obs_type = forecast_metadata[’SST observation’].iloc[forecast_metadata.index[

jun1_members.index[i]]]
19 sst_weight = sst_weights.get(obs_type, 0.2) # Default weight if not found
20

21 # Nudging feedback weight
22 nudging_feedback = forecast_metadata[’SST-nudging feedback’].iloc[forecast_metadata.

index[jun1_members.index[i]]]
23 nudging_weight = nudging_weights.get(nudging_feedback, 1.0) # Default weight
24

25 # SVS mixing weight (if enabled, slightly boost)
26 svs_mixing = forecast_metadata[’SVS mixing’].iloc[forecast_metadata.index[

jun1_members.index[i]]]
27 svs_weight = 1.1 if svs_mixing else 1.0
28

29 jun1_weighted_forecasts[i, :] = jun1_forecasts[i, :] * sst_weight * nudging_weight *
svs_weight

30

31 # Time-dependent blending of May1 and Jun1 forecasts
32 for t in range(n_timesteps):
33 june_weight = min(1.0, t / (n_timesteps / 2)) # Increasing weight for June start
34 may_weight = 1.0 - june_weight
35

36 may1_avg = np.mean(may1_weighted_forecasts[:, t])
37 jun1_avg = np.mean(jun1_weighted_forecasts[:, t])
38

39 # Dynamic weighting for extreme events (El Nino/La Nina)
40 # This section is designed to amplify extreme events.
41 extreme_threshold = 0.7 # Define a threshold for extreme events
42 may1_extreme_count = np.sum(np.abs(may1_weighted_forecasts[:, t]) >

extreme_threshold)
43 jun1_extreme_count = np.sum(np.abs(jun1_weighted_forecasts[:, t]) >

extreme_threshold)
44

45 # Boost the influence of ensemble members predicting extreme events
46 may1_extreme_weight = 1.0 + (may1_extreme_count / may1_forecasts.shape[0]) # More

extreme members -> higher weight
47 jun1_extreme_weight = 1.0 + (jun1_extreme_count / jun1_forecasts.shape[0])
48

49 may1_avg_extreme = may1_avg * may1_extreme_weight
50 jun1_avg_extreme = jun1_avg * jun1_extreme_weight
51

52 result[t] = (may_weight * may1_avg_extreme + june_weight * jun1_avg_extreme)
53

54 return result

Figure 4.8: Second half of the code of the selected solution, number 120.
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between different forecast initialization dates, and finally implementing a dynamic weight-
ing mechanism that amplifies predictions of extreme events. While complex, this solution
remains interpretable through decomposition—each section performs a clear function that
can be analyzed individually.

The logic of the solution reflects domain knowledge about the SINTEX model. It assigns
higher weights to configurations using newer observational datasets (OISSTv2daily) and
certain physical parameterizations, suggesting these choices may be particularly important
for prediction accuracy. The time-dependent blending recognizes that forecasts initialized
at different dates have varying skill over the forecast horizon, with gradually increas-
ing weight given to later initializations as the forecast extends further in time. Perhaps
most interestingly, the solution incorporates special handling for extreme events, boost-
ing the influence of ensemble members that predict anomalies exceeding a threshold. This
represents a sophisticated insight about ensemble behavior during El Niño and La Niña
events.

Figure 4.9: Comparison of Solution 120 to the ensemble mean and members on Niño 3.4
prediction.

Figure 4.9 compares the predictions of Solution 120 with the standard ensemble mean
and observed values. It is notable that in periods where the ensemble mean overshoots
the Niño 3.4 prediction, Solution 120 better matches the observational data. However, this
conservative approach comes at the cost of not predicting outlier years like 1997 and 2010.
An analysis of the optimized solutions based on extreme events using a metric like Sym-
metric Extremal Dependence Index (SEDI) (Ferro and Stephenson 2011) could provide
complementary insight to this more conservative model.

Table 4.1 we compare Solution 120 to other ensemble methods on the held-out split
of 2015 to 2022. Solution 120 outperforms both the traditional ensemble mean and the
machine learning approaches, including neural networks and random forests. The compar-
ison with a Bayesian Neural Network is particularly noteworthy, as this approach has been
used for ensemble weighting of geophysical models (Sengupta et al. 2020).
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Model RMSE Correlation
Solution 120 0.2179 0.9866
Ensemble Mean 0.2637 0.9623
Random Forest 0.3788 0.9139
Bayesian NN 0.4595 0.8784
Neural Network 0.5237 0.8156

Table 4.1
Machine learning methods compared to the ensemble mean and Solution 120.

The diversity of viable solutions in our NSGA-II Pareto front suggests there may not
be a single "best" way to combine ensemble predictions. Different combination strategies
may excel under different conditions or for different aspects of prediction. This finding
aligns with work by Monteleoni et al. (2011), who demonstrated adaptive tracking of cli-
mate model performance over time. Our approach of discovering ensemble strategies that
extract information in diverse ways could be combined with an adaptive tracking mech-
anism to propose different solutions from the Pareto front over time. Furthermore, given
that the models are interpretable, experts can choose between ensemble methods in full
understanding of their functionality.

This study represents a first step in applying LMGP to ensemble climate prediction.
While the results demonstrate the potential of evolutionary computation for discovering
interpretable combination strategies, several important directions remain to be explored.
More extensive analysis of the evolved models could reveal patterns in which ensemble
configurations contribute most to accurate predictions under different conditions. Addi-
tional physical variables beyond the Niño 3.4 index could be incorporated to create more
comprehensive prediction strategies. Nevertheless, these preliminary results already sug-
gest that LMGP can serve as a valuable tool for scientific modeling, offering solutions
that balance performance with interpretability. The discovered models not only improve
prediction accuracy but also provide insights into which aspects of the ensemble forecast
system matter most for different prediction tasks.

4.3 Perspectives

Scientific discovery has always required both exploration of the unknown and understand-
ing of what we find. The work presented in this chapter demonstrates how machine learning
can enhance both aspects of this process. Through interpretable models discovered by
genetic programming, we showed how computational techniques can reveal new patterns in
complex environmental systems while maintaining the clarity needed for scientific insight.

Our investigations of shoreline evolution and ENSO prediction illustrate different facets
of this approach. In coastal modeling, genetic programming discovered equations that not
only improved prediction accuracy but also suggested new relationships between envi-
ronmental drivers. The ENSO study showed how machine learning can enhance existing
scientific models by discovering more effective ways to combine ensemble predictions.
Both cases demonstrate that machine learning need not operate as a black box - with
appropriate methods, it can generate discoveries that scientists can analyze and understand.
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The systematic exploration enabled by evolutionary algorithms proves particularly valu-
able for scientific discovery. Where traditional hypothesis testing follows relatively linear
paths, computational exploration can systematically investigate vast spaces of possible
models. This capability might have accelerated historical discoveries - imagine if Kepler
had access to tools that could systematically test different orbital shapes against Brahe’s
data, perhaps suggesting elliptical orbits as a promising alternative to circles. However, the
key insight is that such tools augment rather than replace human scientific reasoning. They
expand our capacity to explore and understand complex phenomena, just as microscopes
and telescopes expanded our ability to observe the natural world.

The interpretability of discovered models remains crucial for scientific progress. While
black-box machine learning models might achieve impressive predictive accuracy, they
cannot advance scientific understanding without providing insights into the mechanisms
behind their predictions. Our work demonstrates that we need not sacrifice interpretability
for performance. Through careful design of search spaces and optimization objectives, we
can discover models that are both accurate and understandable.

The urgency of climate change makes this approach particularly relevant today. Better
understanding of phenomena like coastal erosion and ENSO can help communities prepare
for and adapt to changing environmental conditions. The acceleration of scientific discov-
ery through computational means may prove essential for developing effective responses
to climate challenges. Just as the advent of computers transformed fields like space mis-
sion planning - not by replacing human insight but by enabling more efficient exploration
of possibilities - machine learning can enhance our capacity for scientific discovery when
we need it most.

These examples from environmental science point toward a broader transformation in
how we conduct scientific research. The next chapter will examine this transformation in
detail, proposing a framework for integrating machine learning into the scientific process.
By combining the creative power of computational exploration with the rigor of inter-
pretable modeling, we can develop tools that accelerate discovery while maintaining the
understanding that science requires.





5 Directions

Scientific research rarely follows a straight path. Through advising six PhD students and
leading multiple research projects, my work has evolved from optimizing artificial intel-
ligence to applying it for scientific discovery. This chapter examines that evolution, from
early work on automated machine learning through to current efforts in climate science.
The journey reflects both personal growth as a researcher and shifting priorities in the face
of global challenges.

Previous chapters detailed key themes that emerged through this research: explo-
ration methods that systematically search vast possibility spaces, interpretable models
that advance scientific understanding, and frameworks for automated discovery. These
themes now converge on a singular focus: accelerating climate science. Where Chap-
ter 2 developed methods for creative exploration and Chapter 3 showed how to maintain
understanding of complex systems, Chapter 4 demonstrated their application to pressing
environmental challenges. This final chapter charts the course ahead.

The chapter proceeds through three stages of evolution in research direction. First, it
examines early work on automated machine learning, particularly through the thesis of
Kaitlin Maile on neural architecture optimization. Second, it traces the transition toward
climate science, following the work of Mahmoud Al Najar’s thesis on shoreline forecasting
presented in Chapter 4 and leading to current work on climate modeling.

The chapter concludes with a detailed examination of future directions, centered on
a research proposal. This proposed research program aims to accelerate climate science
through interpretable optimization of scientific code. By applying the lessons learned from
years of research in evolutionary computation and machine learning, it represents both
a natural progression of previous work and a focused response to one of our greatest
challenges, the climate crisis.

5.1 Accelerating AI Discovery

The first steps under my research direction began with an attempt common to many AI
researchers: applying AI to improve AI itself (Hutter, Kotthoff, and Vanschoren 2019). AI
requires many choices in its application, from hyperparameters to architectures, and mak-
ing these choices consumes both human time and computational resources. Through the
thesis of Kaitlin Maile (Maile 2023), we explored how AI could help make these decisions.

This research direction exemplifies a core theme that would later drive my interest in
scientific discovery: the challenge of exploring vast spaces of possibilities to find effective
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solutions. The space of possible neural architectures is immense, growing exponentially
with depth and constrained only by our computational resources (Elsken, Metzen, and
Hutter 2019). The question of architecture choice has taken on new urgency as AI sys-
tems grow larger and consume more energy (Samsi et al. 2023). The following work
on automated neural architecture search, including the optimization of both structure and
symmetry constraints, points toward methods for creating more efficient AI systems.

5.1.1 Discovering symmetry
Neural networks can be constrained to respect symmetries in data, such as how rotating
an image should result in the same classification rotated (Veeling et al. 2018). These
constraints, known as equivariances, improve generalization but are typically applied
uniformly across an entire network. The challenge lies in determining which symmetry
constraints to apply at each layer of the network.

In Maile, Wilson, and Forré (2023), we developed two approaches to automatically
discover appropriate symmetry constraints. The first uses an evolutionary algorithm to
gradually relax symmetry constraints while preserving network function. The second
approach allows each layer to smoothly mix different symmetry constraints, learning the
right balance through gradient descent.

We tested these methods on several image classification tasks with varying degrees of
inherent symmetry. The algorithms discovered that early layers benefit from stronger sym-
metry constraints while later layers work better with more flexibility. This matches the
intuition that early visual processing should respect basic geometric transformations while
higher-level features may need to break these symmetries.

Most notably, networks with appropriate symmetry constraints achieved equal or better
performance with fewer parameters. By sharing weights according to geometric sym-
metries, these networks required less memory and computation. This demonstrates how
incorporating knowledge about data structure can lead to more efficient AI systems.

5.1.2 Neurogenesis
Most neural networks start with a fixed size, often larger than necessary to ensure sufficient
capacity for learning. This overprovisioning of resources can lead to wasteful computation
and energy usage (Luccioni, Jernite, and Strubell 2024). Through the NORTH* algorithm,
we developed methods to grow networks dynamically during training, adding neurons only
when needed (Maile et al. 2022).

The key insight was to monitor the independence of neural activations. When neurons
begin producing redundant outputs, it signals that the network has saturated its current
capacity. At this point, new neurons are added in a way that maximizes their potential
to contribute novel features. This process continues until the network achieves both its
performance goals and efficient use of parameters.

This approach consistently produced networks that were both smaller and more efficient
than traditional fixed architectures. Rather than starting with an oversized network and
pruning it down, NORTH* builds networks from the ground up, ensuring each neuron
serves a purpose. The resulting networks typically used 50-80% fewer parameters while
maintaining competitive performance.
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This work demonstrates a fundamental principle for efficient AI: start small and grow
only as needed. Just as nature builds complex systems through gradual development rather
than trimming down oversized structures, neural networks can benefit from careful, tar-
geted growth. This principle becomes increasingly important as we consider the energy
costs of training and deploying AI systems at scale.

5.1.3 Energy impact of AI
These works aimed to automate architectural decisions in neural networks, seeking to
reduce the human effort in applying AI. However, these methods for creating minimal,
efficient networks take on new importance as the energy consumption of AI becomes a
pressing concern. Recent studies show that the computational demands of large AI mod-
els contribute to a significant carbon footprint (Samsi et al. 2023; Luccioni, Jernite, and
Strubell 2024)

The rise of commercial AI products, particularly large language models, has led to ris-
ing energy consumption in the AI sector. While a single inference might seem negligible,
the cumulative effect of millions of queries to these models creates substantial energy
demands. The trend toward larger, more general models rather than specialized ones fur-
ther compounds this issue. Task-specific models can be orders of magnitude more efficient
than their general-purpose counterparts.

Methods like EquiNAS and NORTH* could help address this challenge by optimiz-
ing model architectures for specific tasks. Rather than deploying large, general models,
we could automatically generate smaller, specialized networks that incorporate relevant
symmetries and use only necessary neurons. The equivariance constraints discovered by
EquiNAS could reduce parameter counts, while the growing process of NORTH* could
ensure networks remain as small as possible.

However, an important question remains: would more efficient AI systems actually
reduce overall energy consumption? Historical precedent suggests that making a technol-
ogy more efficient often leads to increased usage rather than reduced resource consump-
tion, referred to as Jevons’ paradox (Jevons 1865). The development of more efficient AI
architectures might accelerate AI adoption, potentially increasing rather than decreasing
total energy usage. This paradox is one argument of why my future research focuses not
on making AI more efficient, but on applying AI directly to climate challenges.

5.1.4 Neural Networks as Code
A second research direction that follows the work of Kaitlin Maile would be to make neural
networks more like code—correctable, manually definable, and decomposable into under-
standable components. Neural networks excel at pattern recognition but remain opaque
black boxes, while scientific code offers interpretability but lacks the adaptability to learn
from data. Rather than optimizing code like we optimize neural networks, this approach
would transform neural networks to work more like software.

For neural networks to work like code, they must first be modular. The self-distillation
approach proposed in Zhang, Bao, and Ma (2021) moves in this direction by creating
intermediate outputs that can be separately analyzed. Modularity has long been a subject
of interest in the evolution and development of neural networks (Gruau 1994; Miller and
Wilson 2017), but recent trends favor large, monolithic models with obscure interfaces. By
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making neural networks more modular, we could break them into discrete functional units,
study each component’s decision process, and fix specific parts that exhibit errors without
retraining the entire system.

A second necessary advance would be the ability to directly define neural networks
through human specification rather than optimization alone. Currently, creating a neu-
ral network that implements even a simple function like f (x) = 0.2 · sin(x) + x2 requires
generating training data and optimizing parameters through gradient descent. In con-
trast, programmers can simply write such functions directly in code. The recent work in
Yuksekgonul et al. (2025) moves toward this vision by using text-based feedback to mod-
ify AI systems, but still lacks the immediacy and precision of manual definition that is
characteristic of software development.

If neural networks could be manipulated like software—with modules that can be com-
posed, inspected, modified, and reused—then interpretability would emerge naturally from
the design process. This would allow scientists to combine the learning capabilities of
neural networks with the transparency of traditional scientific code. Errors could be cor-
rected through targeted interventions rather than complete retraining, and domain expertise
could be directly incorporated into models rather than indirectly through data curation.
This direction, while challenging, could lead to AI systems that maintain the performance
benefits of neural networks while gaining the reliability, trustworthiness, and intellectual
accessibility of well-written scientific code.

5.2 Towards Climate Modeling

While there are interesting directions in using automated discovery methods to improve AI,
it is questionable if the pace of AI research would benefit from an even faster pace. Rather,
these methods can be put to immediate use in climate science, where a better understanding
of the warming world can help us find solutions and mitigate damage. Recent findings show
that global warming has already exceeded 1.5°C above pre-industrial levels (McCulloch et
al. 2024). Even if carbon emissions ceased immediately, the thermal inertia of our oceans
means continued warming for decades to come (Oh et al. 2024). This reality creates an
urgent need for better understanding of climate systems, not just for mitigation but for
adaptation to changes already locked in.

Some argue that we already understand climate change sufficiently, that the time for
research has passed and only action remains. I believe that this view, while understandable
given the urgency of the crisis, misses a crucial point: improved scientific understand-
ing represents a form of action. Better models enable more effective responses, whether
in coastal protection, agricultural adaptation, or disaster preparedness. The methods devel-
oped in previous chapters - systematic exploration and interpretable modeling - find natural
application in advancing this understanding.

Climate models face three key limitations that machine learning could help address:
uncertainty in current understanding, gaps in prediction capabilities, and difficulty in attri-
bution of human impacts. These challenges align with the strengths of automated discovery
methods, suggesting productive directions for future research. The following sections
examine these limitations and how interpretable machine learning might help overcome
them.
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5.2.1 Climate Model Limitations
Current climate models represent remarkable achievements of scientific understanding,
simulating complex interactions between the atmosphere, oceans, and land masses. Yet
they face persistent uncertainties, particularly in representing phenomena that operate
across different temporal and spatial scales. These limitations matter not just for scientific
understanding but for society’s ability to prepare for and adapt to climate change. Many
critical processes, such as Arctic melt, cloud formation, and ocean circulation, remain
incompletely understood or poorly represented in current models. As climate change accel-
erates, these uncertainties become increasingly consequential, as they affect our ability to
predict and mitigate its impacts.

The El Niño-Southern Oscillation (ENSO) phenomenon exemplifies these challenges.
Despite its profound influence on global weather patterns, from droughts in Australia to
flooding in South America, our ability to predict ENSO events remains limited (Timmer-
mann et al. 2018; Ibebuchi and Richman 2024). Significant uncertainties remain about
how ENSO patterns might shift as oceans warm and circulation patterns change (Yeh
et al. 2009). Understanding these changes becomes increasingly crucial as communities
worldwide depend on ENSO forecasts for agricultural planning and disaster preparedness.

Scale presents another fundamental challenge. Climate processes operate across vast
ranges of time and space, from microscale cloud formation to global circulation patterns.
Current models must either simplify these interactions or demand enormous computa-
tional resources (Eyring et al. 2019). These compromises create uncertainties that cascade
through predictions, affecting everything from regional rainfall patterns to sea level rise
estimates. For example, Arctic melt is a critical process that remains poorly modeled.
The melting of glaciers and sea ice involves complex feedback loops between tempera-
ture, albedo, and ocean currents, which are not fully captured in current simulations. As
the Arctic warms faster than other regions, these uncertainties grow, making it difficult to
predict the rate and extent of melting and its global impacts.

The advent of satellite observation and sophisticated sensor networks has generated
massive amounts of climate data. Yet integrating this wealth of information into exist-
ing models remains challenging (Eyring et al. 2024). Our work on shoreline forecasting
demonstrated this gap—while traditional models relied primarily on wave data, incor-
porating satellite observations of sea level anomalies improved predictions (Al Najar et
al. 2023). Similar opportunities exist across climate science, where observational data
might reveal patterns that current physics-based models miss or oversimplify. For instance,
satellite data on Arctic ice thickness and melt ponds could help refine models of glacial
melt (Reil et al. 2024), but integrating such data into existing frameworks remains a work
in progress.

These limitations do not diminish the achievements of current climate science. Rather,
they point toward opportunities where machine learning techniques, particularly those
focused on interpretable modeling and efficient exploration, could enhance our under-
standing. As we face the need to prepare for climate impacts, addressing these limitations
becomes increasingly urgent. The next section examines how improved models could
enhance society’s preparedness for climate change.
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5.2.2 Preparing for the crisis
Climate change has moved beyond a future threat to a present reality requiring immediate
adaptation. Communities worldwide face decisions about infrastructure, agriculture, and
disaster response with profound long-term consequences. Models serve as essential tools
for these decisions, translating scientific understanding into actionable insights for planners
and policymakers.

Our work on shoreline forecasting illustrates this practical dimension. Coastal com-
munities cannot wait for perfect understanding of ocean dynamics before taking action.
They need reliable predictions to guide decisions about seawalls, managed retreat, or nat-
ural solutions like mangrove restoration. The interpretable models we developed not only
improved prediction accuracy but also helped explain which factors drive coastal change,
leading the way to more informed adaptation strategies.

Similarly, enhanced ENSO prediction could transform how regions prepare for climate
variability. When El Niño events strengthen, some regions face increased risk of flooding
while others confront severe drought (Power et al. 2013). Better forecasting, particularly at
longer time scales, would allow communities to adjust agricultural practices, prepare emer-
gency responses, or manage water resources more effectively. These preparations become
increasingly critical as climate change potentially alters the intensity and frequency of
ENSO events (Cai et al. 2014).

Recent advances in weather forecasting through machine learning, exemplified by mod-
els like GraphCast, demonstrate the potential for improved prediction of extreme events
(Lam et al. 2023). As climate change increases the frequency and intensity of such events,
the ability to provide accurate, timely forecasts becomes crucial for public safety. How-
ever, these models currently operate as black boxes, limiting their utility for understanding
how climate change affects weather patterns. This highlights the need for interpretable
approaches that can both predict and explain changing weather dynamics.

The gap between scientific understanding and practical action often stems from uncer-
tainty about local impacts. While global climate projections have grown more robust,
translating these into local implications remains challenging. Interfaces between different
systems are often poorly understood, as they fall between expertise of specialists in spe-
cific systems. Machine learning methods, particularly those maintaining interpretability,
could help bridge this gap. By discovering patterns in local data while respecting phys-
ical constraints, they could provide the specific insights needed for effective adaptation
planning.

5.2.3 Understanding our impact
Understanding which climate changes stem from human activity and which represent nat-
ural variation presents a fundamental scientific challenge. This distinction matters not
just for attribution but for evaluating the effectiveness of mitigation efforts. Models serve
as essential tools for this analysis, helping separate anthropogenic signals from natural
climate variability.

Consider agricultural practices, where human decisions directly affect local and regional
climate patterns. Studies of cover crops demonstrate how farming choices influence both
carbon sequestration and local temperature regulation (Kaye and Quemada 2017). Models
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helped quantify these effects, showing that cover crops can mitigate warming by approx-
imately 100-150g CO2 equivalent per square meter annually. Such precise understanding
enables evidence-based policy decisions.

As climate impacts intensify, we increasingly see examples of unintended consequences
from human interventions in natural systems. These range from the effects of large-scale
deforestation on regional rainfall patterns to the impact of urban development on local
temperature extremes. Understanding these dynamics becomes crucial as communities
implement adaptation measures that may themselves affect climate systems.

The scientific community now faces an additional challenge: evaluating proposed delib-
erate interventions in the climate system. Despite the risks and uncertainties involved, some
researchers have begun modeling various geoengineering approaches (Kravitz et al. 2011).
These studies reveal the complexity of climate response to intervention, with models show-
ing that even successful global temperature reduction could have uneven regional impacts
(Kravitz et al. 2013).

The existence of these proposals makes robust modeling capabilities more crucial than
ever. Not to promote such interventions, but to understand their potential consequences and
risks. Current models already show that proposed interventions like stratospheric aerosol
injection could have widely varying regional effects (Visioni et al. 2021). This underscores
the need for models that can better predict the full range of potential impacts before any
large-scale intervention is considered.

The role of climate modeling thus extends beyond prediction to responsibility. As pres-
sure for climate action grows, models must help evaluate both intended and unintended
consequences of human decisions. This requires not just accurate predictions but inter-
pretable results that can inform policy discussions and public understanding. The stakes
of climate intervention demand nothing less than complete transparency in our modeling
approaches.

5.3 Accelerating Climate Science

The previous sections establish both the urgency of climate modeling and the potential
for machine learning to accelerate scientific understanding. I have formulated my research
objectives in this directions through an ERC Starting Grant proposal, entitled Accelerating
Science with Automatic and Interpretable Model Improvement (AIMI). Rather than apply-
ing machine learning directly to raw climate data, AIMI focuses on improving the scientific
models themselves through interpretable optimization techniques. While the AIMI project
is only a proposal, I detail it here as it lays out a concrete vision for applying AI to climate
science.

This approach builds on key themes developed throughout this manuscript: exploration
methods for discovering novel solutions, interpretable modeling techniques that advance
scientific understanding, and automated discovery processes that accelerate research.
However, where previous work used a variety of standard benchmarks to measure and
demonstrate methodological progress, AIMI redirects these techniques toward the more
urgent challenge of understanding climate change.

The project divides this challenge into two complementary objectives, shown in
Figure 5.1. The first develops novel methods for optimizing scientific code, building on



72 Chapter 5

Improve model code Accelerate climate science

WP B1
Shoreline models

WP B2
Climate models

WP A1
Optimizing code

WP A2
Improving models

Figure 5.1: The two objectives and four theses of the AIMI project. Arrows indicate the
expected flow of information and collaboration between theses.

recent advances in large language models and evolutionary algorithms. The second applies
these methods to accelerate climate science, focusing on two critical areas: shoreline
forecasting and ENSO prediction. This structure reflects a key insight from my previous
research: the need to develop methods in parallel with their application, allowing each to
inform the other.

The scope of AIMI represents an intentional focus of my research agenda. Where previ-
ous work explored diverse applications of evolutionary computation and machine learning,
this project commits fully to climate science. This focus stems from both the urgency of the
climate crisis and the recognition that meaningful progress requires sustained, coordinated
effort. The following sections detail how AIMI’s approach to code optimization and model
improvement could accelerate our understanding of climate systems.

5.3.1 Improve model code
The first component of AIMI centers on developing methods to automatically improve sci-
entific code. This work builds on recent advances in Large Language Models (LLMs) that
can generate and modify computer programs, as demonstrated in Chapter 4. Rather than
replacing existing scientific models, these methods aim to enhance them by discovering
more efficient or accurate implementations.

The first proposed thesis in this direction explores how LLMs can generate and opti-
mize code based on scientific data. While LLMs have shown an impressive ability to write
code (Li et al. 2022), their output often lacks the precision required for scientific comput-
ing. By combining LLMs with evolutionary search techniques, we can generate code that
both performs well on observational data and respects physical constraints. This approach
draws from my previous work on genetic programming while leveraging the advanced
capabilities of modern language models.

The second proposed thesis addresses a complementary challenge: integrating physi-
cal knowledge into code optimization. Scientific models must respect fundamental laws
of physics, conservation principles, and domain-specific constraints. This work devel-
ops methods for embedding these constraints into the optimization process, ensuring that
generated code remains physically valid while improving performance. The techniques
build on advances in physics-informed machine learning but apply them to direct code
optimization rather than neural networks.

Supporting these theses, a research engineer position focuses on developing robust soft-
ware tools for scientific code optimization. This role ensures that theoretical advances
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translate into practical tools that scientists can use. The goal is to create an open-source
framework that makes automated code improvement accessible to researchers across
scientific domains.

While these methods apply broadly to scientific computing, their development is guided
by the needs of climate modeling. The complexity of climate models, with their intricate
physical relationships and computational demands, provides an ideal testing ground for
code optimization techniques. Success in this domain would demonstrate the potential for
automated discovery to accelerate scientific understanding more broadly.

5.3.2 Accelerate climate science
The second component of AIMI applies code optimization techniques to two critical areas
of climate science: coastal dynamics and large-scale climate patterns. These applications
build directly on my previous work while targeting areas where improved models could
impact our understanding of climate change.

The first proposed thesis extends our work on shoreline forecasting from Chapter 4 to
regional scales. Where previous models operated at single coastal points, this work aims to
capture how shorelines evolve across entire coastlines. This scaling presents both computa-
tional and physical challenges - shorelines don’t evolve in isolation but influence each other
through sediment transport and wave patterns. By combining satellite data with optimized
physical models, we seek to understand these broader coastal dynamics.

The second proposed thesis focuses on improving predictions of the El Niño-Southern
Oscillation (ENSO). Working with the Japan Agency for Marine-Earth Science and
Technology (Japan Agency for Marine-Earth Science and Technology (JAMSTEC)), this
research aims to enhance their ENSO prediction system, building on the work presented
in Chapter 4. Going beyond the ensemble predictions, this thesis is intended to directly
improve the physical code of the ENSO models. This work could improve our ability to
forecast ENSO events, improving understanding of climate events worldwide.

A postdoctoral researcher bridges these two efforts, focusing on how local and global
climate patterns interact. This position examines how large-scale phenomena like ENSO
influence local processes like coastal erosion. Understanding these cross-scale interactions
becomes increasingly important as climate change alters both global circulation patterns
and local weather extremes.

These applications target phenomena where better predictions could directly inform
adaptation strategies. Improved shoreline models could help coastal communities plan for
sea-level rise, while better ENSO forecasts could enhance agricultural and disaster pre-
paredness. The interpretability of our approach ensures that discoveries not only improve
predictions but advance scientific understanding of these critical climate systems.

5.3.3 Perspectives
The AIMI project represents a shift in my approach to research direction. Through previous
advising experiences, I learned valuable lessons about guiding research while maintain-
ing individual creativity. These experiences shape how AIMI structures its multiple theses
towards a common goal.
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One key insight from past projects concerns the complexity of truly interdisciplinary
research. The thesis of Mahmoud Al Najar, bridging computer science and coastal dynam-
ics, revealed both the potential and challenges of such work. Research communities, means
of publication, and nomenclature vary between fields. Expecting a PhD student to under-
stand these differences and deliver a successful thesis in them is a tall demand. Rather than
expecting researchers to fully bridge disciplines within the scope of a single thesis, AIMI
pairs theses across domains. Each researcher maintains firm grounding in their primary
field while collaborating closely with counterparts in complementary areas.

The project also marks a departure from my previous approach to research direction. Ear-
lier work often followed diverse interests, allowing PhD students freedom to explore their
motivations. While this approach led to interesting discoveries, such as Paul Templier’s
work on quality-diversity to Kaitlin Maile’s insights into neurogenesis, I believe that large-
scale interdisciplinary projects like AIMI demand more focused effort. AIMI’s structured
approach draws from my experience with the industrial CIFRE theses of Paul-Antoine le
Tolguenec and Estelle Chigot, where clear objectives have guided research without limiting
creativity.

A concrete example of this is in the creation and maintenance of scientific code. While
each of the theses that I have advised has produced open-source code libraries, they have
been distinct. I did not seek to dedicate resources to their maintenance or adoption. That
does not limit their adoption; Quality with Just Enough Diversity (JEDi) (Templier, Gril-
lotti, et al. 2024) is implemented in the popular QDAX framework (Chalumeau et al. 2024),
for example, enabling its future use. The work of Kaitlin Maile has been reimplemented
for later study (Douka et al. 2025), as another example. However, the AIMI project intends
for four PhD students to share common methodology around diverse applications. A stan-
dard, maintained, and accessible code base will be a necessary part of that and motivated
the inclusion of a research engineer in the project.

Perhaps most importantly, AIMI reflects a commitment to building scientific commu-
nities rather than just developing algorithms. The interaction between computer scientists
and climate researchers requires careful cultivation of shared understanding and trust. My
role shifts from purely technical direction to fostering these connections, ensuring that
computational advances truly serve scientific needs.

The methods and insights presented in this manuscript point toward a broader trans-
formation in how we approach scientific discovery. There is a need for approaches
like convergence research (Sharp and Hockfield 2017)— collaborative, transdisciplinary
approaches that unite scientists, engineers, policymakers, and communities. By combining
the strengths of machine learning, climate science, and other fields, we can accelerate dis-
covery, improve predictive models, and develop actionable strategies to mitigate and adapt
to climate change. This is the future of scientific inquiry and the key to addressing the most
urgent challenges of our era.
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